首先可以发现的是,因为两条线段不能在除了端点处相交,因此整个多边形最终一定会被连接成最上方由若干条线段在端点处相交连成,每条线段下方又是一个子结构。

因此你会发现,每个合法的状态都能被分成两个合法的子结构,因此可以考虑使用区间 \(dp\) 来解决这个问题。

首先,我们简单地考虑令 \(dp_{i, j}\) 表示只使用 \(i, j\) 这个区间之间的边将 \(i, j\) 这个区间联通的方案。

  • 直接在 \(i, j\) 之间连边。

那么枚举每个 \(k\) 做为中间的断点,那么就有转移:

\[dp_{i, j} = \sum\limits_{k = i} ^ {j - 1} dp_{i, k} \times dp_{k + 1, j}(a_{i, j} = 1)
\]
  • 不直接在 \(i, j\) 之间连边。

同样考虑枚举中间的端点 \(k\),那么一个合法的方案就会被描述为用 \(i \sim k\) 之间的边联通 \(i \sim k\) 另一边类似,于是有转移:

\[dp_{i, j} = \sum\limits_{k = i + 1} ^ {j - 1} dp_{i, k} \times dp_{k, j}
\]

但其实你会发现,同一个断点的方案会被所有最外层线段交点的位置计算一次,那么一个最简单的想法就是让这个方案只被计算一次。

于此同时你可以发现我们目前只会计算直接连接两个端点的方案,因此让这个方案在左上边第一个线段交点的位置计算一次是一个不赖的选择。

因此我们需要改写一下 \(dp\) 的状态,令 \(dp_{i, j, 0 / 1}\) 分别表示直接连接 \(i, j\) 和不直接连接 \(i, j\) 的方案。

那么这里的转移就应该变为:

\[dp_{i, j, 1} = \sum\limits_{k = i + 1} ^ {j - 1} (dp_{i, k, 0} + dp_{i, k, 1}) \times dp_{k, j, 0}
\]

对应地改写第一条转移方程即可。

复杂度 \(O(n ^ 3)\)。

#include <bits/stdc++.h>
using namespace std;
#define rep(i, l, r) for (int i = l; i <= r; ++i)
const int N = 500 + 5;
const int Mod = 1e9 + 7;
int n, a[N][N], f[N][N], dp[N][N][2];
int read() {
char c; int x = 0, f = 1;
c = getchar();
while (c > '9' || c < '0') { if(c == '-') f = -1; c = getchar();}
while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int Inc(int a, int b) { return (a += b) >= Mod ? a - Mod : a;}
int Mul(int a, int b) { return 1ll * a * b % Mod;}
int main() {
n = read();
rep(i, 1, n) rep(j, 1, n) a[i][j] = read();
rep(i, 1, n) dp[i][i][1] = f[i][i] = 1;
rep(i, 1, n) dp[i][i + 1][0] = f[i][i + 1] = a[i][i + 1];
rep(len, 3, n) rep(i, 1, n) {
int j = i + len - 1; if(j > n) break;
rep(k, i, j - 1) if(a[i][j]) dp[i][j][0] = Inc(dp[i][j][0], Mul(f[i][k], f[k + 1][j]));
rep(k, i + 1, j - 1) dp[i][j][1] = Inc(dp[i][j][1], Mul(f[i][k], dp[k][j][0]));
f[i][j] = Inc(dp[i][j][0], dp[i][j][1]);
}
printf("%d", f[1][n]);
return 0;
}

值得一提的是,\(dp\) 的转移一定要想办法将这个问题拆解成已经解决的子问题的结构,例如区间 \(dp\) 中就一定要能描述为左右两个合法区间的结合或其他的意义。

CF888F Connecting Vertices的更多相关文章

  1. Connecting Vertices CodeForces - 888F (图论,计数)

    链接 大意: 给定邻接表表示两点是否可以连接, 要求将图连成树, 且边不相交的方案数 n范围比较小, 可以直接区间dp $f[l][r]$表示答案, $g[l][r]$表示区间[l,r]全部连通且l, ...

  2. POJ Minimum Cut

    Minimum Cut Time Limit: 10000MS   Memory Limit: 65536K Total Submissions: 9302   Accepted: 3902 Case ...

  3. POJ 2914 Minimum Cut

    Minimum Cut Time Limit: 10000MS   Memory Limit: 65536K Total Submissions: 9319   Accepted: 3910 Case ...

  4. 论文笔记之:Large Scale Distributed Semi-Supervised Learning Using Streaming Approximation

    Large Scale Distributed Semi-Supervised Learning Using Streaming Approximation Google  2016.10.06 官方 ...

  5. CodeForces 682C Alyona and the Tree (树+dfs)

    Alyona and the Tree 题目链接: http://acm.hust.edu.cn/vjudge/contest/121333#problem/C Description Alyona ...

  6. POJ_2914_Minimum_Cut_(Stoer_Wagner)

    描述 http://poj.org/problem?id=2914 求无向图中最小割. Minimum Cut Time Limit: 10000MS   Memory Limit: 65536K T ...

  7. POJ 2914 Minimum Cut 最小割图论

    Description Given an undirected graph, in which two vertices can be connected by multiple edges, wha ...

  8. Shorten Diameter

    Shorten Diameter Time limit : 2sec / Stack limit : 256MB / Memory limit : 256MB Score : 600 points P ...

  9. 2015 多校联赛 ——HDU5302(构造)

    Connect the Graph Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others ...

随机推荐

  1. 第二十九个知识点:什么是UF-CMA数字签名的定义?

    第二十九个知识点:什么是UF-CMA数字签名的定义? 第16篇博客给出了DSA,Schnoor和RSA-FDH签名方案的细节,但是签名方案是什么?它应该保证什么样的安全性? 一个签名方案\(S\)是一 ...

  2. iGPT and ViT

    目录 概 主要内容 iGPT ViT 代码 Chen M., Radford A., Child R., Wu J., Jun H., Dhariwal P., Luan D., Sutskever ...

  3. 向setup.py里添加自定义command

    向setup.py里添加自定义command 参考这里 继承distutils.cmd.Command类: class CCleanCommand(distutils.cmd.Command): &q ...

  4. Ubuntu 16.04远程配置Jupyter Notebook

    安装和配置Jupyter Notebook 安装jupyter notebook conda conda install -c conda-forge notebook pip pip install ...

  5. <数据结构>由SearchTree的遍历序列确定树

    目录 XDOJ315. 拓展先序遍历-->二叉树 问题与解答 题后反思:数组树的不足 XDOJ318.先序+中序-->二叉树 问题与解答 题后反思:左右子树赋零 XDOJ320.层序+中序 ...

  6. k8s-svc

    1. 简介 kubernets service 是将运行一组pods上的应用程序公开为网络服务的抽象方法. 有了 kubernets service,你就无需修改应用程序即可使用服务发现机制,kube ...

  7. 20道JavaScript经典面试题

    该篇文章整理了一些前端经典面试题,附带详解,涉及到JavaScript多方面知识点,满满都是干货-建议收藏阅读 前言 如果这篇文章有帮助到你,️关注+点赞️鼓励一下作者,文章公众号首发,关注 前端南玖 ...

  8. [GDOI2021 Day2T1] 宝石

    题目大意 \(n\)个点的树, 树上每一个点有一个宝石\(w_i\), 给出一个固定的数字不重复的序列\(p_i\)和一些询问\(u_i, v_i\), 对于每一个询问求出\(u_i\)到\(v_i\ ...

  9. [ python应用 ] python递归搜索文件,支持搜索多个文件,支持自定义处理动作

    写了一个PyQT界面的版本:https://github.com/LongchuanYu/pyqt_project PATH = r'E:\MyDocument\新しいフォルダー\' # 要搜索的目录 ...

  10. [ Flask ] myblog_flask问题集(RESTfull风格)

    VUE问题 前端VUE怎么捕获所有404NOT FOUND的路由呢? [ 解决方案 ] vue-router路由守卫,参考文档:动态路由匹配 对于路由.../edit/<id>,自己能编辑 ...