首先可以发现的是,因为两条线段不能在除了端点处相交,因此整个多边形最终一定会被连接成最上方由若干条线段在端点处相交连成,每条线段下方又是一个子结构。

因此你会发现,每个合法的状态都能被分成两个合法的子结构,因此可以考虑使用区间 \(dp\) 来解决这个问题。

首先,我们简单地考虑令 \(dp_{i, j}\) 表示只使用 \(i, j\) 这个区间之间的边将 \(i, j\) 这个区间联通的方案。

  • 直接在 \(i, j\) 之间连边。

那么枚举每个 \(k\) 做为中间的断点,那么就有转移:

\[dp_{i, j} = \sum\limits_{k = i} ^ {j - 1} dp_{i, k} \times dp_{k + 1, j}(a_{i, j} = 1)
\]
  • 不直接在 \(i, j\) 之间连边。

同样考虑枚举中间的端点 \(k\),那么一个合法的方案就会被描述为用 \(i \sim k\) 之间的边联通 \(i \sim k\) 另一边类似,于是有转移:

\[dp_{i, j} = \sum\limits_{k = i + 1} ^ {j - 1} dp_{i, k} \times dp_{k, j}
\]

但其实你会发现,同一个断点的方案会被所有最外层线段交点的位置计算一次,那么一个最简单的想法就是让这个方案只被计算一次。

于此同时你可以发现我们目前只会计算直接连接两个端点的方案,因此让这个方案在左上边第一个线段交点的位置计算一次是一个不赖的选择。

因此我们需要改写一下 \(dp\) 的状态,令 \(dp_{i, j, 0 / 1}\) 分别表示直接连接 \(i, j\) 和不直接连接 \(i, j\) 的方案。

那么这里的转移就应该变为:

\[dp_{i, j, 1} = \sum\limits_{k = i + 1} ^ {j - 1} (dp_{i, k, 0} + dp_{i, k, 1}) \times dp_{k, j, 0}
\]

对应地改写第一条转移方程即可。

复杂度 \(O(n ^ 3)\)。

#include <bits/stdc++.h>
using namespace std;
#define rep(i, l, r) for (int i = l; i <= r; ++i)
const int N = 500 + 5;
const int Mod = 1e9 + 7;
int n, a[N][N], f[N][N], dp[N][N][2];
int read() {
char c; int x = 0, f = 1;
c = getchar();
while (c > '9' || c < '0') { if(c == '-') f = -1; c = getchar();}
while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int Inc(int a, int b) { return (a += b) >= Mod ? a - Mod : a;}
int Mul(int a, int b) { return 1ll * a * b % Mod;}
int main() {
n = read();
rep(i, 1, n) rep(j, 1, n) a[i][j] = read();
rep(i, 1, n) dp[i][i][1] = f[i][i] = 1;
rep(i, 1, n) dp[i][i + 1][0] = f[i][i + 1] = a[i][i + 1];
rep(len, 3, n) rep(i, 1, n) {
int j = i + len - 1; if(j > n) break;
rep(k, i, j - 1) if(a[i][j]) dp[i][j][0] = Inc(dp[i][j][0], Mul(f[i][k], f[k + 1][j]));
rep(k, i + 1, j - 1) dp[i][j][1] = Inc(dp[i][j][1], Mul(f[i][k], dp[k][j][0]));
f[i][j] = Inc(dp[i][j][0], dp[i][j][1]);
}
printf("%d", f[1][n]);
return 0;
}

值得一提的是,\(dp\) 的转移一定要想办法将这个问题拆解成已经解决的子问题的结构,例如区间 \(dp\) 中就一定要能描述为左右两个合法区间的结合或其他的意义。

CF888F Connecting Vertices的更多相关文章

  1. Connecting Vertices CodeForces - 888F (图论,计数)

    链接 大意: 给定邻接表表示两点是否可以连接, 要求将图连成树, 且边不相交的方案数 n范围比较小, 可以直接区间dp $f[l][r]$表示答案, $g[l][r]$表示区间[l,r]全部连通且l, ...

  2. POJ Minimum Cut

    Minimum Cut Time Limit: 10000MS   Memory Limit: 65536K Total Submissions: 9302   Accepted: 3902 Case ...

  3. POJ 2914 Minimum Cut

    Minimum Cut Time Limit: 10000MS   Memory Limit: 65536K Total Submissions: 9319   Accepted: 3910 Case ...

  4. 论文笔记之:Large Scale Distributed Semi-Supervised Learning Using Streaming Approximation

    Large Scale Distributed Semi-Supervised Learning Using Streaming Approximation Google  2016.10.06 官方 ...

  5. CodeForces 682C Alyona and the Tree (树+dfs)

    Alyona and the Tree 题目链接: http://acm.hust.edu.cn/vjudge/contest/121333#problem/C Description Alyona ...

  6. POJ_2914_Minimum_Cut_(Stoer_Wagner)

    描述 http://poj.org/problem?id=2914 求无向图中最小割. Minimum Cut Time Limit: 10000MS   Memory Limit: 65536K T ...

  7. POJ 2914 Minimum Cut 最小割图论

    Description Given an undirected graph, in which two vertices can be connected by multiple edges, wha ...

  8. Shorten Diameter

    Shorten Diameter Time limit : 2sec / Stack limit : 256MB / Memory limit : 256MB Score : 600 points P ...

  9. 2015 多校联赛 ——HDU5302(构造)

    Connect the Graph Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others ...

随机推荐

  1. 为什么我的 WordPress 网站被封了?

    今年以来,一系列 "清朗" "护苗" "净网" 专项整治行动重拳出击,"清朗·春节网络环境"取消备案网站平台2300余家 ...

  2. SuperPixel

    目录 SLIC Superpixel algorithm 距离函数的选择 代码 Gonzalez R. C. and Woods R. E. Digital Image Processing (For ...

  3. SpringBoot中如何优雅的使用多线程

    SpringBoot中如何优雅的使用多线程 当异步方法有返回值时,如何获取异步方法执行的返回结果呢?这时需要异步调用的方法带有返回值CompletableFuture

  4. SpringCloud集成Security安全(Eureka注册中心)

    1.说明 为了保护注册中心的服务安全, 避免恶意服务注册到Eureka, 需要对Eureka Server进行安全保护, 本文基于Spring Security方案, 为Eureka Server增加 ...

  5. Java中List与数组互相转换

    1.说明 在Java中,经常遇到需要List与数组互相转换的场景. List转换成数组,可以使用List的toArray()或者toArray(T[] a)方法. 数组转换成List,可以使用Arra ...

  6. RSA非对称加密算法实现:Java

    RSA是1977年由罗纳德·李维斯特(Ron Rivest).阿迪·萨莫尔(Adi Shamir)和伦纳德·阿德曼(Leonard Adleman)一起提出的.当时他们三人都在麻省理工学院工作.RSA ...

  7. 开源社区合入patch的步骤

    以Ranger项目为例,说明开源社区合入patch的详细步骤. 1.reviews页面下载patch 进入到review页面:https://reviews.apache.org/r/67919/ 点 ...

  8. 35个JAVA性能优化总结

    原文链接:http://mp.weixin.qq.com/s/J614jGM_oMrzdeS_ivmhvA   代码优化,一个很重要的课题.可能有些人觉得没用,一些细小的地方有什么好修改的,改与不改对 ...

  9. Linux上天之路(三)之Linux系统目录

    1. Linux设计思想 1) 程序应该小而专一,程序应该尽量的小,且只专注于一件事上,不要开发那些看起来有用但是90%的情况都用不到的特性: 2) 程序不只要考虑性能, 程序的可移植性更重要,she ...

  10. Hadoop的Shuffle阶段

    原文: https://www.toutiao.com/i6764683672772674062/ 在进入Map之前,首先会将数据从HDFS中读取,进行处理,按照字节偏移量这种之前说的形式处理为K,V ...