高斯消元求主元——模意义下的消元cf1155E
#include <bits/stdc++.h>
const int N = , MO = ;
int a[N][N], n = ;
inline int qpow(int a, int b) {
int ans = ;
while(b) {
if(b & ) {
ans = 1ll * ans * a % MO;
}
a = 1ll * a * a % MO;
b = b >> ;
}
return ans;
}
inline void Gauss() {
for(int i = ; i < n; i++) {
for(int j = i + ; j <= n; j++) {
if(a[j][i]) {
std::swap(a[j], a[i]);
break;
}
}
if(!a[i][i]) continue;
int inv = qpow(a[i][i], MO - );
for(int j = i + ; j <= n; j++) {
if(!a[j][i]) continue;
int p = 1ll * a[j][i] * inv % MO;
for(int k = i; k <= n + ; k++) {
a[j][k] -= 1ll * a[i][k] * p % MO;
a[j][k] = (a[j][k] % MO + MO) % MO;
}
}
}
for(int i = n; i > ; i--) {
a[i][n + ] = 1ll * a[i][n + ] * qpow(a[i][i], MO - ) % MO;
a[i][i] = ;
for(int j = i - ; j >= ; j--) {
if(!a[j][i]) continue;
int p = a[j][i];
a[j][i] -= p;
a[j][n + ] -= 1ll * a[i][n + ] * p % MO;
a[j][n + ] = (a[j][n + ] % MO + MO) % MO;
a[j][i] = (a[j][i] % MO + MO) % MO;
}
}
return;
} inline int cal(int x) {
int ans = , temp = ;
for(int i = ; i <= n; i++) {
(ans += 1ll * temp * a[i][n + ] % MO) %= MO;
temp = 1ll * temp * x % MO;
}
return ans;
}
int main() {
for(int i = ; i <= n; i++) {
fflush(stdout);
printf("? %d \n", i);
fflush(stdout);
scanf("%d", &a[i][n + ]);
fflush(stdout);
a[i][] = ;
for(int j = ; j <= n; j++) {
a[i][j] = 1ll * a[i][j - ] * i % MO;
}
} Gauss(); int ans = -;
for(int i = ; i < MO; i++) {
if(!cal(i)) {
ans = i;
break;
}
}
printf("! %d \n", ans);
return ;
}
高斯消元求主元——模意义下的消元cf1155E的更多相关文章
- hdu 6088 Rikka with Rock-paper-scissors (2017 多校第五场 1004) 【组合数学 + 数论 + 模意义下的FFT】
题目链接 首先利用组合数学知识,枚举两人的总胜场数容易得到 这还不是卷积的形式,直接搞的话复杂度大概是O(n^2)的,肯定会TLE.但似乎和卷积有点像?想半天没想出来..多谢Q巨提醒,才知道可以用下面 ...
- 模意义下的FFT算法
//写在前面 单就FFT算法来说的话,下面只给出个人认为比较重要的推导,详细的介绍可参考 FFT算法学习笔记 令v[n]是长度为2N的实序列,V[k]表示该实序列的2N点DFT.定义两个长度为N的实序 ...
- Newcoder Wannafly13 B Jxy军训(费马小定理、分数在模意义下的值)
链接:https://www.nowcoder.com/acm/contest/80/B 题目描述 在文某路学车中学高一新生军训中,Jxc正站在太阳下站着军姿,对于这样的酷热的阳光,Jxc 表示非常不 ...
- 【BZOJ2137】submultiple 高斯消元求伯努利数
[BZOJ2137]submultiple Description 设函数g(N)表示N的约数个数.现在给出一个数M,求出所有M的约数x的g(x)的K次方和. Input 第一行输入N,K.N表示M由 ...
- HDU - 5755:Gambler Bo (开关问题,%3意义下的高斯消元)
pro:给定N*M的矩阵,每次操作一个位置,它会增加2,周围4个位置会增加1.给定初始状态,求一种方案,使得最后的数都为0:(%3意义下. sol:(N*M)^3的复杂度的居然过了. ...
- HDU4870_Rating_双号从零单排_高斯消元求期望
原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=4870 原题: Rating Time Limit: 10000/5000 MS (Java/Other ...
- 【bzoj4004】[JLOI2015]装备购买 贪心+高斯消元求线性基
题目描述 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示 (1 <= i <= n; 1 <= j < ...
- HDU 5833 (2016大学生网络预选赛) Zhu and 772002(高斯消元求齐次方程的秩)
网络预选赛的题目……比赛的时候没有做上,确实是没啥思路,只知道肯定是整数分解,然后乘起来素数的幂肯定是偶数,然后就不知道该怎么办了… 最后题目要求输出方案数,首先根据题目应该能写出如下齐次方程(从别人 ...
- SPOJ HIGH(生成树计数,高斯消元求行列式)
HIGH - Highways no tags In some countries building highways takes a lot of time... Maybe that's bec ...
随机推荐
- SpringMVC拦截器的实现单方登陆
过滤器跟拦截器的区别 ①拦截器是基于java的反射机制的,而过滤器是基于函数回调.②拦截器不依赖与servlet容器,过滤器依赖与servlet容器.③拦截器只能对action请求起作用,而过滤器则可 ...
- 创建Web项目运行时出小错误及解决方法
1.目录结构 2.各文件内容 index.jsp <%@ page contentType="text/html;charset=UTF-8" language=" ...
- python学习之老男孩python全栈第九期_day026知识点总结——封装、property、类方法、初识反射
一. 封装 class Room: def __init__(self, name, length, width): self.__name = name self.__length = length ...
- DOM基础操作(三)
DOM剩余的两个操作一并带来! 1.删除操作 removeChild 这个方法依然是父级调用的,参数就是要删除的子节点,其实实际上是剪切,这个方法会把我们删除掉的元素给返回,我们可以用一个变量去保存这 ...
- csharp: 图片字符间距
引用WINDOWS API: [DllImport("gdi32.dll", CharSet = CharSet.Auto)] public static extern int S ...
- BZOJ3512:DZY Loves Math IV
传送门 Sol 好神仙的题目.. 一开始就直接莫比乌斯反演然后就 \(GG\) 了 orz 题解 permui 枚举 \(n\),就是求 \(\sum_{i=1}^{n}S(i,m)\) 其中\(S( ...
- ajax回调中执行window.open被拦截的解决办法
From:https://blog.csdn.net/winy_lm/article/details/60959751 ajax async设为false即同步调用 //去支付function got ...
- RocketMQ读书笔记7——吞吐量优先的场景
[Broker端进行消息过滤] 在Broker端进行消息过滤,可以减少无效消息发送到Consumer,少占用网络宽带从而提高吞吐量. [过滤方式1——通过Tag过滤] [ 关于Tag和Key ] 对一 ...
- linux 下的python的最佳打开方式, you know?
IPython install IPython是Python的交互式Shell,提供了代码自动补完,自动缩进,高亮显示,执行Shell命令等非常有用的特性.特别是它的代码补完功能,例如:在输入zlib ...
- django的orm操作的补充
---恢复内容开始--- 你在建立一个登陆的时候需要用到auth这个用户登陆模块 这个时候就需要用到user表中的信息你就可以继承 这个时候我们的用户表中继承我们user继承的表 ABstractUs ...