#include <bits/stdc++.h>
const int N = , MO = ;
int a[N][N], n = ;
inline int qpow(int a, int b) {
int ans = ;
while(b) {
if(b & ) {
ans = 1ll * ans * a % MO;
}
a = 1ll * a * a % MO;
b = b >> ;
}
return ans;
}
inline void Gauss() {
for(int i = ; i < n; i++) {
for(int j = i + ; j <= n; j++) {
if(a[j][i]) {
std::swap(a[j], a[i]);
break;
}
}
if(!a[i][i]) continue;
int inv = qpow(a[i][i], MO - );
for(int j = i + ; j <= n; j++) {
if(!a[j][i]) continue;
int p = 1ll * a[j][i] * inv % MO;
for(int k = i; k <= n + ; k++) {
a[j][k] -= 1ll * a[i][k] * p % MO;
a[j][k] = (a[j][k] % MO + MO) % MO;
}
}
}
for(int i = n; i > ; i--) {
a[i][n + ] = 1ll * a[i][n + ] * qpow(a[i][i], MO - ) % MO;
a[i][i] = ;
for(int j = i - ; j >= ; j--) {
if(!a[j][i]) continue;
int p = a[j][i];
a[j][i] -= p;
a[j][n + ] -= 1ll * a[i][n + ] * p % MO;
a[j][n + ] = (a[j][n + ] % MO + MO) % MO;
a[j][i] = (a[j][i] % MO + MO) % MO;
}
}
return;
} inline int cal(int x) {
int ans = , temp = ;
for(int i = ; i <= n; i++) {
(ans += 1ll * temp * a[i][n + ] % MO) %= MO;
temp = 1ll * temp * x % MO;
}
return ans;
}
int main() {
for(int i = ; i <= n; i++) {
fflush(stdout);
printf("? %d \n", i);
fflush(stdout);
scanf("%d", &a[i][n + ]);
fflush(stdout);
a[i][] = ;
for(int j = ; j <= n; j++) {
a[i][j] = 1ll * a[i][j - ] * i % MO;
}
} Gauss(); int ans = -;
for(int i = ; i < MO; i++) {
if(!cal(i)) {
ans = i;
break;
}
}
printf("! %d \n", ans);
return ;
}

高斯消元求主元——模意义下的消元cf1155E的更多相关文章

  1. hdu 6088 Rikka with Rock-paper-scissors (2017 多校第五场 1004) 【组合数学 + 数论 + 模意义下的FFT】

    题目链接 首先利用组合数学知识,枚举两人的总胜场数容易得到 这还不是卷积的形式,直接搞的话复杂度大概是O(n^2)的,肯定会TLE.但似乎和卷积有点像?想半天没想出来..多谢Q巨提醒,才知道可以用下面 ...

  2. 模意义下的FFT算法

    //写在前面 单就FFT算法来说的话,下面只给出个人认为比较重要的推导,详细的介绍可参考 FFT算法学习笔记 令v[n]是长度为2N的实序列,V[k]表示该实序列的2N点DFT.定义两个长度为N的实序 ...

  3. Newcoder Wannafly13 B Jxy军训(费马小定理、分数在模意义下的值)

    链接:https://www.nowcoder.com/acm/contest/80/B 题目描述 在文某路学车中学高一新生军训中,Jxc正站在太阳下站着军姿,对于这样的酷热的阳光,Jxc 表示非常不 ...

  4. 【BZOJ2137】submultiple 高斯消元求伯努利数

    [BZOJ2137]submultiple Description 设函数g(N)表示N的约数个数.现在给出一个数M,求出所有M的约数x的g(x)的K次方和. Input 第一行输入N,K.N表示M由 ...

  5. HDU - 5755:Gambler Bo (开关问题,%3意义下的高斯消元)

    pro:给定N*M的矩阵,每次操作一个位置,它会增加2,周围4个位置会增加1.给定初始状态,求一种方案,使得最后的数都为0:(%3意义下. sol:(N*M)^3的复杂度的居然过了.          ...

  6. HDU4870_Rating_双号从零单排_高斯消元求期望

    原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=4870 原题: Rating Time Limit: 10000/5000 MS (Java/Other ...

  7. 【bzoj4004】[JLOI2015]装备购买 贪心+高斯消元求线性基

    题目描述 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示 (1 <= i <= n; 1 <= j < ...

  8. HDU 5833 (2016大学生网络预选赛) Zhu and 772002(高斯消元求齐次方程的秩)

    网络预选赛的题目……比赛的时候没有做上,确实是没啥思路,只知道肯定是整数分解,然后乘起来素数的幂肯定是偶数,然后就不知道该怎么办了… 最后题目要求输出方案数,首先根据题目应该能写出如下齐次方程(从别人 ...

  9. SPOJ HIGH(生成树计数,高斯消元求行列式)

    HIGH - Highways no tags  In some countries building highways takes a lot of time... Maybe that's bec ...

随机推荐

  1. JAVA基础之——序列化和反序列化

    1 概念 序列化,将java对象转换成字节序列的过程. 反序列化,将字节序列恢复成java对象的过程. 2 为什么要序列化? 2.1 实现数据持久化,当对象创建后,它就会一直在,但是在程序终止时,这个 ...

  2. cf1060C. Maximum Subrectangle(思维 枚举)

    题意 题目链接 Sol 好好读题 => 送分题 不好好读题 => 送命题 开始想了\(30\)min数据结构发现根本不会做,重新读了一遍题发现是个傻逼题... \(C_{i, j} = a ...

  3. JavaScript周报#184

    This week’s JavaScript news Read this issue on the Web | Issue Archive JavaScript Weekly Issue 184Ju ...

  4. jquery操作select(选中,取值)

    最近工作中总出现select 和 option问题,整理一下,内容大部分源于网络资料 一.基础取值问题 例如<select class="selector"></ ...

  5. ant-design里为了清空Modal中的值, modal 中值有缓存 ....

    处理列表中的编辑功能,发现有点爽,看的都是上次编辑后内容, 搜文档 也没说具体怎么清空旧的状态 网上搜了下,说给 moal 设置一个不同的key 试了,用这方式可以解决问题,  只要这个key是全新的 ...

  6. Linux命令行bash批量重命名文件

    本文介绍下,在linux下使用shell批量重命名文件的例子,有需要的朋友参考下吧. 在linux中,重命名文件名,需要用到mv命令.如果需要批量重命名名一批文件,就需要写bash脚本或命令行了. 例 ...

  7. order by 多条件查询 case when

    场景:在按照条件查询后,排序按照不同的条件排序,以及同一个条件 正序和倒序排序.可以考虑使用. 遇到的排序条件:按照直播的状态,根据条件排序.直播的状态包括:直播.置顶.预告.回放.过期预告.排序条件 ...

  8. hive 历史拉链表的处理

    1. CREATE TABLE lalian_test(id int,col1 string,col2 string,dt string)--测试表COMMENT 'this is a test2'  ...

  9. 词法分析器Lexer

    词法分析 In computer science, lexical analysis, lexing or tokenization is the process of converting a se ...

  10. matplotlib点线 坐标刻度 3D图绘制(六)

    plot语句中支持除X,Y以外的参数,以字符串形式存在,来控制颜色.线型.点型等要素,语法形式为: plt.plot(X, Y, 'format', ...) 1 点和线的样式 颜色 参数color或 ...