高斯消元求主元——模意义下的消元cf1155E
#include <bits/stdc++.h>
const int N = , MO = ;
int a[N][N], n = ;
inline int qpow(int a, int b) {
int ans = ;
while(b) {
if(b & ) {
ans = 1ll * ans * a % MO;
}
a = 1ll * a * a % MO;
b = b >> ;
}
return ans;
}
inline void Gauss() {
for(int i = ; i < n; i++) {
for(int j = i + ; j <= n; j++) {
if(a[j][i]) {
std::swap(a[j], a[i]);
break;
}
}
if(!a[i][i]) continue;
int inv = qpow(a[i][i], MO - );
for(int j = i + ; j <= n; j++) {
if(!a[j][i]) continue;
int p = 1ll * a[j][i] * inv % MO;
for(int k = i; k <= n + ; k++) {
a[j][k] -= 1ll * a[i][k] * p % MO;
a[j][k] = (a[j][k] % MO + MO) % MO;
}
}
}
for(int i = n; i > ; i--) {
a[i][n + ] = 1ll * a[i][n + ] * qpow(a[i][i], MO - ) % MO;
a[i][i] = ;
for(int j = i - ; j >= ; j--) {
if(!a[j][i]) continue;
int p = a[j][i];
a[j][i] -= p;
a[j][n + ] -= 1ll * a[i][n + ] * p % MO;
a[j][n + ] = (a[j][n + ] % MO + MO) % MO;
a[j][i] = (a[j][i] % MO + MO) % MO;
}
}
return;
} inline int cal(int x) {
int ans = , temp = ;
for(int i = ; i <= n; i++) {
(ans += 1ll * temp * a[i][n + ] % MO) %= MO;
temp = 1ll * temp * x % MO;
}
return ans;
}
int main() {
for(int i = ; i <= n; i++) {
fflush(stdout);
printf("? %d \n", i);
fflush(stdout);
scanf("%d", &a[i][n + ]);
fflush(stdout);
a[i][] = ;
for(int j = ; j <= n; j++) {
a[i][j] = 1ll * a[i][j - ] * i % MO;
}
} Gauss(); int ans = -;
for(int i = ; i < MO; i++) {
if(!cal(i)) {
ans = i;
break;
}
}
printf("! %d \n", ans);
return ;
}
高斯消元求主元——模意义下的消元cf1155E的更多相关文章
- hdu 6088 Rikka with Rock-paper-scissors (2017 多校第五场 1004) 【组合数学 + 数论 + 模意义下的FFT】
题目链接 首先利用组合数学知识,枚举两人的总胜场数容易得到 这还不是卷积的形式,直接搞的话复杂度大概是O(n^2)的,肯定会TLE.但似乎和卷积有点像?想半天没想出来..多谢Q巨提醒,才知道可以用下面 ...
- 模意义下的FFT算法
//写在前面 单就FFT算法来说的话,下面只给出个人认为比较重要的推导,详细的介绍可参考 FFT算法学习笔记 令v[n]是长度为2N的实序列,V[k]表示该实序列的2N点DFT.定义两个长度为N的实序 ...
- Newcoder Wannafly13 B Jxy军训(费马小定理、分数在模意义下的值)
链接:https://www.nowcoder.com/acm/contest/80/B 题目描述 在文某路学车中学高一新生军训中,Jxc正站在太阳下站着军姿,对于这样的酷热的阳光,Jxc 表示非常不 ...
- 【BZOJ2137】submultiple 高斯消元求伯努利数
[BZOJ2137]submultiple Description 设函数g(N)表示N的约数个数.现在给出一个数M,求出所有M的约数x的g(x)的K次方和. Input 第一行输入N,K.N表示M由 ...
- HDU - 5755:Gambler Bo (开关问题,%3意义下的高斯消元)
pro:给定N*M的矩阵,每次操作一个位置,它会增加2,周围4个位置会增加1.给定初始状态,求一种方案,使得最后的数都为0:(%3意义下. sol:(N*M)^3的复杂度的居然过了. ...
- HDU4870_Rating_双号从零单排_高斯消元求期望
原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=4870 原题: Rating Time Limit: 10000/5000 MS (Java/Other ...
- 【bzoj4004】[JLOI2015]装备购买 贪心+高斯消元求线性基
题目描述 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示 (1 <= i <= n; 1 <= j < ...
- HDU 5833 (2016大学生网络预选赛) Zhu and 772002(高斯消元求齐次方程的秩)
网络预选赛的题目……比赛的时候没有做上,确实是没啥思路,只知道肯定是整数分解,然后乘起来素数的幂肯定是偶数,然后就不知道该怎么办了… 最后题目要求输出方案数,首先根据题目应该能写出如下齐次方程(从别人 ...
- SPOJ HIGH(生成树计数,高斯消元求行列式)
HIGH - Highways no tags In some countries building highways takes a lot of time... Maybe that's bec ...
随机推荐
- csharp: read excel using Aspose.Cells
/// <summary> /// /// </summary> /// <param name="strFileName"></para ...
- git 之奇技淫巧
1,git remote prune origin 本地有很多其实早就被删除的远程分支,可以用 git remote prune origin 全部清除掉,这样再 checkout 别的分支时就清晰 ...
- centos配置网络
[root@localhost ~]# vi /etc/sysconfig/network-scripts/ifcfg-eth0DEVICE="eth0"BOOTPROTO=&qu ...
- Lambda多表联合
var query = database.Posts // your starting point - table in the "from" statement .Join(da ...
- 前端构建工具Gulp的学习和使用
前几天刚鼓捣了Grunt的使用,结果文档还没捂热,老大说我们还是用gulp吧,搞得我又得来整gulp,眼泪流成河了,真是不晓得底层人民的辛苦啊.不过经过对gulp的学习,发现很好用,比grunt舒服! ...
- python装饰器 高阶函数 函数闭包
1.装饰器: 本质是函数,功能是为其他函数添加附加功能 原则:1.不修改被装饰函数的源代码 2.不修改被修饰函数的调用方式 装饰器=高阶函数+函数嵌套+闭包 #装饰器格式框架def wrap(func ...
- 线程Event事件
事件(event) 事件是不同线程之间的同步对象 enent可以通过设置.等待.清除一个标识(flag),来进行线程间的控制 线程可以通过获取这个标志位(flag)的状态(设置或未设置)来控制线程 事 ...
- .net core Web应用启动类
在ASP.NET Core中,Startup类为Web应用的入口类,用于配置Web服务的管道/过滤器以及Web应用所能用到的服务.在启动Web应用后,ASP.NET将在主库中查询名为Startup的类 ...
- [翻译] AsyncDisplayKit
AsyncDisplayKit AsyncDisplayKit is an iOS framework that keeps even the most complex user interfaces ...
- Vscode rg.exe cpu 占用过高
文件-> 首选项 -> 设置 -> 搜索search.followSymlinks 或者 修改settings.json 添加 "search.followSymlinks ...