Portal-->bzoj4591

Solution

  首先这个模数是一个质数

  然后看一下那个\(k\)和\(n\)的范围。。行吧Lucas定理咯

  但是如果直接求:

\[\sum\limits_{i=0}^{k}\binom n i
\]

  那。。稳稳的T啊。。。所以要化一下式子,我们令\(k=ap+b\):

\[\begin{aligned}
\sum\limits_{i=0}^{k}\binom n i&\equiv \sum\limits_{i=0}^k \binom {i/p} {n/p}\binom {i\% p}{n\%p}(mod\ p)\\
&\equiv \sum\limits_{i=0}^{ap-1}\binom {i/p} {n/p}\binom {i\% p}{n\%p}+\sum\limits_{i=ap}^{ap+b}\binom {i/p} {n/p}\binom {i\% p}{n\%p}(mod\ p)\\
&\equiv \sum\limits_{i=0}^{a-1}\binom {i} {n/p}\sum\limits_{i=0}^{p-1}\binom {i}{n\%p}+\binom a {n/p}\sum\limits_{i=0}^b\binom {i}{n\%p}
\end{aligned}
\]

  然后因为\(p\)比较小(只有\(2333\)真是2333)

  所以我们可以直接暴力处理出\(n,m<=2333\)的\(\binom n m\)的的前缀和

  然后对于范围内的直接调用,范围外的用上面那个式子递归处理就好了

  

  代码大概长这个样子:

#include<iostream>
#include<cstdio>
#include<cstring>
#define ll long long
using namespace std;
const int MOD=2333;
ll c[MOD+10][MOD+10],sum[MOD+10][MOD+10];
ll n,k,T,ans;
void prework(int n);
ll Lucas(ll n,ll m);
ll Min(ll x,ll y){return x<y?x:y;}
ll f(ll n,ll k); int main(){
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
#endif
ll a,b;
scanf("%lld",&T);
prework(MOD);
for (int o=1;o<=T;++o){
scanf("%lld%lld",&n,&k);
printf("%lld\n",f(n,k));
}
} void prework(int n){
c[0][0]=1;
for (int i=1;i<=n;++i){
c[i][0]=1; c[i][i]=1;
for (int j=1;j<i;++j)
c[i][j]=(c[i-1][j-1]+c[i-1][j])%MOD;
}
for (int i=0;i<=n;++i){
sum[i][0]=c[i][0];
for (int j=1;j<=n;++j)
sum[i][j]=(sum[i][j-1]+c[i][j])%MOD;
}
} ll Lucas(ll n,ll m){
if (n<m) return 0;
if (n<MOD&&m<MOD) return c[n][m];
return c[n%MOD][m%MOD]*Lucas(n/MOD,m/MOD)%MOD;
} ll f(ll n,ll k){
if (k<0) return 0;
if (n<MOD&&k<MOD) return sum[n][k];
return (f(n/MOD,min(k/MOD-1,n/MOD))*sum[n%MOD][MOD-1]%MOD+Lucas(n/MOD,k/MOD)*sum[n%MOD][k%MOD]%MOD)%MOD;
}

【bzoj4591】超能粒子炮·改的更多相关文章

  1. 【BZOJ4591】[SHOI2015]超能粒子炮·改 (卢卡斯定理)

    [BZOJ4591][SHOI2015]超能粒子炮·改 (卢卡斯定理) 题面 BZOJ 洛谷 题解 感天动地!终于不是拓展卢卡斯了!我看到了一个模数,它是质数!!! 看着这个东西就感觉可以递归处理. ...

  2. 【BZOJ4591】超能粒子炮·改(Lucas定理,组合计数)

    题意: 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加 强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威力上有了本质的提 ...

  3. 【BZOJ-4591】超能粒子炮·改 数论 + 组合数 + Lucas定理

    4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 95  Solved: 33[Submit][Statu ...

  4. bzoj4591 / P4345 [SHOI2015]超能粒子炮·改

    P4345 [SHOI2015]超能粒子炮·改 题意:求$\sum_{i=1}^{k}C(n,i)\%(P=2333)$ 肯定要先拆开,不然怎么做呢(大雾) 把$C(n,i)$用$lucas$分解一下 ...

  5. 【bzoj4591】[Shoi2015]超能粒子炮·改 Lucas定理

    题目描述 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威力上有了本质的提 ...

  6. bzoj4591 [Shoi2015]超能粒子炮·改

    Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加 强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威 ...

  7. [bzoj4591][Shoi2015][超能粒子炮·改] (lucas定理+组合计数)

    Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加 强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威 ...

  8. Bzoj 4591: [Shoi2015]超能粒子炮·改 数论,Lucas定理,排列组合

    4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 178  Solved: 70[Submit][Stat ...

  9. bzoj 4591: [Shoi2015]超能粒子炮·改 [lucas定理]

    4591: [Shoi2015]超能粒子炮·改 题意:多组询问,求 \[ S(n, k) = \sum_{i=0}^n \binom{n}{i} \mod 2333,\ k \le n \le 10^ ...

  10. 洛谷 P4345 [SHOI2015]超能粒子炮·改 解题报告

    P4345 [SHOI2015]超能粒子炮·改 题意 求\(\sum_{i=0}^k\binom{n}{i}\),\(T\)组数据 范围 \(T\le 10^5,n,j\le 10^{18}\) 设\ ...

随机推荐

  1. Linux☞如何修改文件权限

    修改文件/目录的权限:chmod  规则 文件/目录名 规则: 角色:u 自己人  user g 同组人 group         o 其他人 other a 所有人 all 操作: + - 权限 ...

  2. Appium 安卓计算器demo

    package testProject; import org.openqa.selenium.*; import org.openqa.selenium.remote.DesiredCapabili ...

  3. hadoop之Shuffle和Sort

    MapRduce保证reducer的输入是按照key进行排过序的,原因和归并排序有关,在reducer接收到不同的mapper输出的有序数据后,需要再次进行排序,然后是分组排序,如果mapper输出的 ...

  4. sql批量更新

    -----------------更新无锡医院名称 update Opt_DKI_Hospital set centerName =tmp.[医院名称] from Opt_DKI_Hospital h ...

  5. 多用户在线FTP程序

    项目名:多用户在线FTP程序 一.需求 1.用户加密认证 2.允许同时多用户登录 3.每个用户有自己的家目录 ,且只能访问自己的家目录 4.对用户进行磁盘配额,每个用户的可用空间不同 5.允许用户在f ...

  6. UUID.randomUUID()简单介绍

    UUID含义是通用唯一识别码 (Universally Unique Identifier),这 是一个软件建构的标准,也是被开源软件基金会 (Open Software Foundation, OS ...

  7. [redis] linux下主从篇(2)

    一.前言1.为何要主从架构避免单机故障,主服务器挂掉后,还可以手动切换从服务为主服务继续工作,保持缓存数据完整. 2.主从同步的原理步骤从服务器连接主服务器,发送SYNC命令:主服务器接收到SYNC命 ...

  8. Spring Bean注册解析(一)

           Spring是通过IoC容器对Bean进行管理的,而Bean的初始化主要分为两个过程:Bean的注册和Bean实例化.Bean的注册主要是指Spring通过读取配置文件获取各个bean的 ...

  9. 互评Alpha版本——二次元梦之队——“I Do”

    基于NABCD评论作品,及改进建议 1.根据(不限于)NABCD评论作品的选题 (1)N(Need,需求) 随着智能科技的发展和普及,编程教育的重要性已经逐渐凸显出来.美国前总统奥巴马曾说“编程应当与 ...

  10. 欢迎来怼---作业要求 20171015 beta冲刺贡献分分配规则

    一.小组信息 队名:欢迎来怼 小组成员 队长:田继平 成员:李圆圆,葛美义,王伟东,姜珊,邵朔,阚博文 基础分      每人占个人总分的百分之40% leangoo里面的得分    每人占个人总分里 ...