【bzoj4591】超能粒子炮·改
Solution
首先这个模数是一个质数
然后看一下那个\(k\)和\(n\)的范围。。行吧Lucas定理咯
但是如果直接求:
\]
那。。稳稳的T啊。。。所以要化一下式子,我们令\(k=ap+b\):
\sum\limits_{i=0}^{k}\binom n i&\equiv \sum\limits_{i=0}^k \binom {i/p} {n/p}\binom {i\% p}{n\%p}(mod\ p)\\
&\equiv \sum\limits_{i=0}^{ap-1}\binom {i/p} {n/p}\binom {i\% p}{n\%p}+\sum\limits_{i=ap}^{ap+b}\binom {i/p} {n/p}\binom {i\% p}{n\%p}(mod\ p)\\
&\equiv \sum\limits_{i=0}^{a-1}\binom {i} {n/p}\sum\limits_{i=0}^{p-1}\binom {i}{n\%p}+\binom a {n/p}\sum\limits_{i=0}^b\binom {i}{n\%p}
\end{aligned}
\]
然后因为\(p\)比较小(只有\(2333\)真是2333)
所以我们可以直接暴力处理出\(n,m<=2333\)的\(\binom n m\)的的前缀和
然后对于范围内的直接调用,范围外的用上面那个式子递归处理就好了
代码大概长这个样子:
#include<iostream>
#include<cstdio>
#include<cstring>
#define ll long long
using namespace std;
const int MOD=2333;
ll c[MOD+10][MOD+10],sum[MOD+10][MOD+10];
ll n,k,T,ans;
void prework(int n);
ll Lucas(ll n,ll m);
ll Min(ll x,ll y){return x<y?x:y;}
ll f(ll n,ll k);
int main(){
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
#endif
ll a,b;
scanf("%lld",&T);
prework(MOD);
for (int o=1;o<=T;++o){
scanf("%lld%lld",&n,&k);
printf("%lld\n",f(n,k));
}
}
void prework(int n){
c[0][0]=1;
for (int i=1;i<=n;++i){
c[i][0]=1; c[i][i]=1;
for (int j=1;j<i;++j)
c[i][j]=(c[i-1][j-1]+c[i-1][j])%MOD;
}
for (int i=0;i<=n;++i){
sum[i][0]=c[i][0];
for (int j=1;j<=n;++j)
sum[i][j]=(sum[i][j-1]+c[i][j])%MOD;
}
}
ll Lucas(ll n,ll m){
if (n<m) return 0;
if (n<MOD&&m<MOD) return c[n][m];
return c[n%MOD][m%MOD]*Lucas(n/MOD,m/MOD)%MOD;
}
ll f(ll n,ll k){
if (k<0) return 0;
if (n<MOD&&k<MOD) return sum[n][k];
return (f(n/MOD,min(k/MOD-1,n/MOD))*sum[n%MOD][MOD-1]%MOD+Lucas(n/MOD,k/MOD)*sum[n%MOD][k%MOD]%MOD)%MOD;
}
【bzoj4591】超能粒子炮·改的更多相关文章
- 【BZOJ4591】[SHOI2015]超能粒子炮·改 (卢卡斯定理)
[BZOJ4591][SHOI2015]超能粒子炮·改 (卢卡斯定理) 题面 BZOJ 洛谷 题解 感天动地!终于不是拓展卢卡斯了!我看到了一个模数,它是质数!!! 看着这个东西就感觉可以递归处理. ...
- 【BZOJ4591】超能粒子炮·改(Lucas定理,组合计数)
题意: 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加 强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威力上有了本质的提 ...
- 【BZOJ-4591】超能粒子炮·改 数论 + 组合数 + Lucas定理
4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 95 Solved: 33[Submit][Statu ...
- bzoj4591 / P4345 [SHOI2015]超能粒子炮·改
P4345 [SHOI2015]超能粒子炮·改 题意:求$\sum_{i=1}^{k}C(n,i)\%(P=2333)$ 肯定要先拆开,不然怎么做呢(大雾) 把$C(n,i)$用$lucas$分解一下 ...
- 【bzoj4591】[Shoi2015]超能粒子炮·改 Lucas定理
题目描述 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威力上有了本质的提 ...
- bzoj4591 [Shoi2015]超能粒子炮·改
Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加 强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威 ...
- [bzoj4591][Shoi2015][超能粒子炮·改] (lucas定理+组合计数)
Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加 强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威 ...
- Bzoj 4591: [Shoi2015]超能粒子炮·改 数论,Lucas定理,排列组合
4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 178 Solved: 70[Submit][Stat ...
- bzoj 4591: [Shoi2015]超能粒子炮·改 [lucas定理]
4591: [Shoi2015]超能粒子炮·改 题意:多组询问,求 \[ S(n, k) = \sum_{i=0}^n \binom{n}{i} \mod 2333,\ k \le n \le 10^ ...
- 洛谷 P4345 [SHOI2015]超能粒子炮·改 解题报告
P4345 [SHOI2015]超能粒子炮·改 题意 求\(\sum_{i=0}^k\binom{n}{i}\),\(T\)组数据 范围 \(T\le 10^5,n,j\le 10^{18}\) 设\ ...
随机推荐
- WebGL树形结构的模型渲染流程
今天和大家分享的是webgl渲染树形结构的流程.用过threejs,babylonjs的同学都知道,一个大模型都是由n个子模型拼装而成的,那么如何依次渲染子模型,以及渲染每个子模型在原生webgl中的 ...
- 网络通讯中 bind函数的作用
面向连接的网络应用程序分为客户端和服务器端.服务器端的执行流程一般为4步,客户端程序相对简单,一般需要两个步骤. 服务器端执行流程4步如下: (1)调用socket函数,建立一个套接字,该套接字用于接 ...
- MySql面试题(持续更新)
1. 左连接,右连接,内连接的概念. 左连接:以左表为主,保留左表的所有数据,并且依次拿每行数据去匹配右表所有行,如果没匹配的,右边表的数据为null. 右连接:以右表为主,保留右表的所有数据,并且依 ...
- day05 字典 dict
今日内容: 字典 成对的保存数据. 以key:value的形式保存 用{}表示,每一项内容都是key:value, 每项数据之间用逗号隔开 字典中的key是不能重复的. 存储是依靠着key来计算的. ...
- Machine Learning方法总结
Kmeans——不断松弛(?我的理解)模拟,将点集分成几堆的算法(堆数需要自己定). 局部加权回归(LWR)——非参数学习算法,不用担心自变量幂次选择.(因此当二次欠拟合, 三次过拟合的时候不妨尝试这 ...
- Literature Books
Lean In (Sheryl Sandberg) Option B (Sheryl Sandberg) Ready Player One
- 4.airflow测试
1.测试sqoop任务1.1 测试全量抽取1.1.1.直接执行命令1.1.2.以shell文件方式执行sqoop或hive任务1.2 测试增量抽取2.测试hive任务3.总结 当前生产上的任务主要分为 ...
- 【转】React-Native 实现增量热更新的思路
所谓热更新就是在不重新安装的前提下进行代码和资源的更新,相信在整个宇宙中还不存在觉得热更新不重要的程序猿. 增量热更新就更牛逼了,只需要把修改过和新增的代码和资源推送给用户下载即可,增量部分的代码和资 ...
- scrum立会报告+燃尽图(第三周第二次)
此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2284 项目地址:https://coding.net/u/wuyy694 ...
- 王者荣耀交流协会 -- 第4次Scrum会议
Scrum master : 王磊 要求1 : 工作照片 照片由高远博同学拍摄 ,王露芝同学(外援)没有参加本次会议. 要求2 : 时间跨度:2017年10月16日 18:00 - 18:44 共计4 ...