先套用一个线段树维护离散化之后的区间的每一段的答案

那么只要考虑怎么下面的东西即可

\[\sum_{i=1}^{n}(A\times i \ mod \ B)
\]

拆开就是

\[\sum_{i=1}^{n}A\times i-B\times \sum_{i=1}^{n}\lfloor\frac{A\times i}{B}\rfloor
\]

只要考虑计算 \(\sum_{i=1}^{n}\lfloor\frac{A\times i}{B}\rfloor\) 即可

类欧几里德算法

若 \(A>B\),那么就是

\[\lfloor\frac{A}{B}\rfloor\sum_{i=1}^{n}i+\sum_{i=1}^{n}\lfloor\frac{(A \ mod \ B)\times i}{B}\rfloor
\]

变成 \(A<B\) 的情况

对于 \(A<B\),那么可以看成是求直线 \(y=\frac{A}{B}\times i,i\in[1,n]\) 与坐标轴围成的三角形中的整点的个数

设 \(m=\lfloor\frac{A\times n}{B}\rfloor\)

把问题为矩形 \((0,0),(n,m)\) 内的减去三角形 \((0,0),(n,m),(0,m)\) 内的再加上对角线的

对角线上的就是 \(\frac{n\times gcd(A,B)}{B}\),矩形内的就是 \(n\times m\)

对于那个三角形的,反转坐标系后相当于是求直线 \(y=\frac{B}{A}\times i,i\in[1,\lfloor\frac{A\times n}{B}\rfloor]\) 与坐标轴围成的三角形中的整点的个数

\[\sum_{i=1}^{\lfloor\frac{A\times n}{B}\rfloor}\lfloor\frac{B\times i}{A}\rfloor
\]

递归处理即可,复杂度和 \(gcd\) 一样

可以先把 \(A,B\) 同时除去 \(gcd\) 后再做

这个题注意一个细节

\[\sum_{i=1}^{n}A\times i-B\times \sum_{i=1}^{n}\lfloor\frac{A\times i}{B}\rfloor
\]

直接求的可能会爆 \(long \ long\)

可以对 \(B\) 分段,算出长度为 \(B\) 的乘上 \(\lfloor\frac{n}{B}\rfloor\),再加上长度为 \(n \ mod \ B\) 的,可以接受

# include <bits/stdc++.h>
using namespace std;
typedef long long ll; namespace IO {
const int maxn(1 << 21 | 1); char ibuf[maxn], *iS, *iT, c;
int f; inline char Getc() {
return iS == iT ? (iT = (iS = ibuf) + fread(ibuf, 1, maxn, stdin), (iS == iT ? EOF : *iS++)) : *iS++;
} template <class Int> inline void In(Int &x) {
for (f = 1, c = Getc(); c < '0' || c > '9'; c = Getc()) f = c == '-' ? -1 : 1;
for (x = 0; c >= '0' && c <= '9'; c = Getc()) x = (x << 1) + (x << 3) + (c ^ 48);
x *= f;
}
} using IO :: In; const int maxn(1e5 + 5); int n, m, o[maxn], cnt; struct Segment {
ll sum;
int a, b, l;
} tr[maxn << 2]; inline void Update(int x) {
tr[x].sum = tr[x << 1].sum + tr[x << 1 | 1].sum;
} inline int Gcd(int a, int b) {
return !b ? a : Gcd(b, a % b);
} inline ll Mul(int a, int b, int len) {
register int k = a / b;
register ll sum = 1LL * k * (len + 1) * len / 2;
if (!(a %= b) || !b) return sum;
register int m = 1LL * len * a / b;
assert(m >= 0);
return 1LL * len * m + len / b - Mul(b, a, m) + sum;
} inline ll Calc(int a, int b, int len) {
if (len < 1 || a == b || b == 1) return 0;
register int g = Gcd(a, b);
return 1LL * a * len * (len + 1) / 2 - 1LL * b * Mul(a / g, b / g, len);
} inline ll Solve(int a, int b, int len) {
register ll ret = Calc(a, b, len % b);
if (len >= b) ret += 1LL * len / b * Calc(a, b, b);
return ret;
} inline void Add(int x, int a, int b, int l, int len) {
tr[x].a = a, tr[x].b = b, tr[x].l = l;
tr[x].sum = Solve(a, b, l + len - 1) - Solve(a, b, l - 1);
} inline void Pushdown(int x, int l, int r) {
if (!tr[x].a) return;
register int mid = (l + r) >> 1;
Add(x << 1, tr[x].a, tr[x].b, tr[x].l, o[mid] - o[l]);
Add(x << 1 | 1, tr[x].a, tr[x].b, tr[x].l + o[mid] - o[l], o[r] - o[mid]);
tr[x].a = tr[x].b = tr[x].l = 0;
} ll Query(int x, int l, int r, int ql, int qr) {
if (l >= qr || r <= ql) return 0;
if (ql <= l && qr >= r) return tr[x].sum;
Pushdown(x, l, r);
register int mid = (l + r) >> 1;
register ll ret = 0;
if (ql <= mid) ret = Query(x << 1, l, mid, ql, qr);
if (qr >= mid) ret += Query(x << 1 | 1, mid, r, ql, qr);
return ret;
} void Modify(int x, int l, int r, int ql, int qr, int a, int b) {
if (l >= qr || r <= ql) return;
if (ql <= l && qr >= r) {
Add(x, a, b, o[l] - o[ql] + 1, o[r] - o[l]);
return;
}
Pushdown(x, l, r);
register int mid = (l + r) >> 1;
if (ql <= mid) Modify(x << 1, l, mid, ql, qr, a, b);
if (qr >= mid) Modify(x << 1 | 1, mid, r, ql, qr, a, b);
Update(x);
} int op[maxn], ql[maxn], qr[maxn], a[maxn], b[maxn]; int main () {
In(n), In(m);
register int i, l, r;
for (i = 1; i <= m; ++i) {
In(op[i]), In(ql[i]), In(qr[i]), --ql[i];
o[++cnt] = ql[i], o[++cnt] = qr[i];
if (op[i] == 1) In(a[i]), In(b[i]);
}
sort(o + 1, o + cnt + 1), cnt = unique(o + 1, o + cnt + 1) - o - 1;
for (i = 1; i <= m; ++i) {
l = lower_bound(o + 1, o + cnt + 1, ql[i]) - o;
r = lower_bound(o + 1, o + cnt + 1, qr[i]) - o;
if (op[i] == 1) Modify(1, 1, cnt, l, r, a[i], b[i]);
else printf("%lld\n", Query(1, 1, cnt, l, r));
}
return 0;
}

Luogu4433:[COCI2009-2010#1] ALADIN(类欧几里德算法)的更多相关文章

  1. UOJ#42. 【清华集训2014】Sum 类欧几里德算法

    原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ42.html 题解 首先我们把式子改写一下: $$(-1)^{\lfloor a\rfloor} \\=1 ...

  2. 2018牛客网暑假ACM多校训练赛(第十场)H Rikka with Ants 类欧几里德算法

    原文链接https://www.cnblogs.com/zhouzhendong/p/NowCoder-2018-Summer-Round10-H.html 题目传送门 - https://www.n ...

  3. BZOJ2987:Earthquake(类欧几里德算法)

    Sol 设 \(n=\lfloor\frac{c}{a}\rfloor\) 问题转化为求 \[\sum_{i=0}^{n}\lfloor\frac{c-ax}{b}\rfloor+1=\sum_{i= ...

  4. 类欧几里德算法(洛谷 P5170

    #include <iostream> #include <cstdio> #include <queue> #include <algorithm> ...

  5. (扩展欧几里德算法)zzuoj 10402: C.机器人

    10402: C.机器人 Description Dr. Kong 设计的机器人卡尔非常活泼,既能原地蹦,又能跳远.由于受软硬件设计所限,机器人卡尔只能定点跳远.若机器人站在(X,Y)位置,它可以原地 ...

  6. 欧几里德与扩展欧几里德算法 Extended Euclidean algorithm

    欧几里德算法 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd( ...

  7. POJ 1061青蛙的约会(拓展欧几里德算法)

    题目链接: 传送门 青蛙的约会 Time Limit: 1000MS     Memory Limit: 65536K Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见 ...

  8. poj2142-The Balance(扩展欧几里德算法)

    一,题意: 有两个类型的砝码,质量分别为a,b;现在要求称出质量为d的物品, 要用多少a砝码(x)和多少b砝码(y),使得(x+y)最小.(注意:砝码位置有左右之分). 二,思路: 1,砝码有左右位置 ...

  9. poj2115-C Looooops(扩展欧几里德算法)

    本题和poj1061青蛙问题同属一类,都运用到扩展欧几里德算法,可以参考poj1061,解题思路步骤基本都一样.一,题意: 对于for(i=A ; i!=B ;i+=C)循环语句,问在k位存储系统中循 ...

随机推荐

  1. HDU - 3085 Nightmare Ⅱ

    HDU - 3085 Nightmare Ⅱ 双向BFS,建立两个队列,让男孩女孩一起走 鬼的位置用曼哈顿距离判断一下,如果该位置与鬼的曼哈顿距离小于等于当前轮数的两倍,则已经被鬼覆盖 #includ ...

  2. 2019年北航OO第二次博客总结

    一.多线程电梯系列作业设计策略 1. 第一次作业——"FAFS傻瓜电梯" 第一次作业是先来先服务的"傻瓜电梯",我当时觉得这个设计未免太简单了,于是就在傻瓜电梯 ...

  3. leetcode-844-比较含退格的字符串(用vector取代stack)

    题目描述: 给定 S 和 T 两个字符串,当它们分别被输入到空白的文本编辑器后,判断二者是否相等,并返回结果. # 代表退格字符. 示例 1: 输入:S = "ab#c", T = ...

  4. mongodb主从备份 和 手动主从切换

    环境: 主机A:172.16.160.91 主机B:172.16.160.92 配置主机A [root@master zhxf]# cat docker-compose.yml version: '3 ...

  5. VS2015编译器按F6不能够重新生成

    工具-->选项-->环境-->键盘-->应用以下其他键盘映射方案,下拉选择 Visual C# 2005

  6. Python PIL库学习笔记

    1.PIL简介 Python Imaging Library(缩写为PIL)(在新的版本中被称为Pillow)是Python编程语言的开源库,它增加了对打开,操作和保存许多不同图像文件格式的支持.它适 ...

  7. error occurred during initialization of vm

    虚拟机无法进行如下分配 : -Xmx2048m -XX:MaxPermSize=512m 原因是我的老爷机总共内存只有3G: settings - > 搜索VM ->找到Compiler ...

  8. ACM练习网站

    1.http://www.acmerblog.com/ Acm之家 2.http://acm.nyist.net/JudgeOnline/problemset.php 南阳理工学院

  9. shiro学习笔记_0500_授权

    1,授权:给身份认证通过的人,授予他可以访问某些资源的权限. 2,权限粒度:分为粗粒度和细粒度. 粗粒度:例如对 user 的 crud,也就是通常所说的对表的操作. 细粒度:对表中记录的操作.如 只 ...

  10. hadoop-2.6.0.tar.gz的集群搭建(3节点)(不含zookeeper集群安装)

    前言 本人呕心沥血所写,经过好一段时间反复锤炼和整理修改.感谢所参考的博友们!同时,欢迎前来查阅赏脸的博友们收藏和转载,附上本人的链接http://www.cnblogs.com/zlslch/p/5 ...