AVL Tree

  An AVL tree is a kind of balanced binary search tree. Named after their inventors, Adelson-Velskii and Landis, they were the first dynamically balanced trees to be proposed. Like red-black trees, they are not perfectly balanced, but pairs of sub-trees differ in height by at most 1, maintaining an O(logn) search time. Addition and deletion operations also take O(logn) time.
Definition of an AVL tree
An AVL tree is a binary search tree which has the following properties:
1. The sub-trees of every node differ in height by at most one.
2. Every sub-tree is an AVL tree.

Balance requirement for an AVL tree: the left and right sub-trees differ by at most 1 in height.An AVL tree of n nodes can have different height.
For example, n = 7:

So the maximal height of the AVL Tree with 7 nodes is 3.
Given n,the number of vertices, you are to calculate the maximal hight of the AVL tree with n nodes.

Input

  Input file contains multiple test cases. Each line of the input is an integer n(0<n<=10^9). 
A line with a zero ends the input. 
Output

  An integer each line representing the maximal height of the AVL tree with n nodes.Sample Input

1
2
0

Sample Output

0
1

解题思路:
  本题给出一个整数,要求输出其能建立的最高的平衡二叉树的高度。

  关于平衡二叉树最小节点最大高度有一个公式,设height[i]为高度为i的平衡二叉树的最小结点数,则height[i] = height[i - 1] + height[i - 2] + 1;

  因为高度为0时平衡二叉树:

  #

  高度为1时平衡二叉树:

0    #  或  #

       /         \

1  #             #

  

  高度为2时平衡二叉树:

0      #    或    #

         /    \          /   \

1    #     #     #     #

    /                 \

2  #                 #

  高度为i时平衡二叉树:

      #    或    #

        /    \          /   \

    i - 2   i - 1       i - 1    i - 2

  所以只需要将10^9内的数据记录后让输入的数据与之比较就可得到答案。(高度不会超过46)

 #include <cstdio>
using namespace std;
const int maxn = ;
int height[maxn];
int main(){
height[] = ;
height[] = ;
for(int i = ; i < maxn; i++){ //记录1 - 50层最小需要多少节点
height[i] = height[i - ] + height[i - ] + ;
}
int n;
while(scanf("%d", &n) != EOF){ //输入数据
if(n == ) //如果为0结束程序
break;
int ans = -;
for(int i = ; i < maxn; i++){ //从第0层开始比较
if(n >= height[i]) //只要输入的数据大于等于该点的最小需求答案高度加一
ans++;
else
break; //否则结束循环
}
printf("%d\n", ans); //输出答案
}
return ;
}

HDU 2193 AVL Tree的更多相关文章

  1. HDU 5513 Efficient Tree

    HDU 5513 Efficient Tree 题意 给一个\(N \times M(N \le 800, M \le 7)\)矩形. 已知每个点\((i-1, j)\)和\((i,j-1)\)连边的 ...

  2. 04-树5 Root of AVL Tree

    平衡二叉树 LL RR LR RL 注意画图理解法 An AVL tree is a self-balancing binary search tree. In an AVL tree, the he ...

  3. 1066. Root of AVL Tree (25)

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...

  4. 1066. Root of AVL Tree

    An AVL tree is a self-balancing binary search tree.  In an AVL tree, the heights of the two child su ...

  5. 树的平衡 AVL Tree

    本篇随笔主要从以下三个方面介绍树的平衡: 1):BST不平衡问题 2):BST 旋转 3):AVL Tree 一:BST不平衡问题的解析 之前有提过普通BST的一些一些缺点,例如BST的高度是介于lg ...

  6. AVL Tree Insertion

    Overview AVL tree is a special binary search tree, by definition, any node, its left tree height and ...

  7. 1123. Is It a Complete AVL Tree (30)

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...

  8. A1123. Is It a Complete AVL Tree

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...

  9. A1066. Root of AVL Tree

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...

随机推荐

  1. Jmeter+Ant生成结果报告时,MinTime、MaxTime显示NaN的问题

    将apache-jmeter-2.13\lib中的serializer-2.7.2.jar.xalan-2.7.2.jar复制到apache-ant-1.9.6\lib中即可: 复制前生成:

  2. “全栈2019”Java多线程第十一章:线程优先级详解

    难度 初级 学习时间 10分钟 适合人群 零基础 开发语言 Java 开发环境 JDK v11 IntelliJ IDEA v2018.3 文章原文链接 "全栈2019"Java多 ...

  3. 学习笔记|JSP教程|菜鸟教程

    学习笔记|JSP教程|菜鸟教程 ------------------------------------------------------------------------------------ ...

  4. codeforces 1096 题解

    A: 发现最优的方案一定是选 $ l $ 和 $ 2 * l $,题目保证有解,直接输出即可 #include <bits/stdc++.h> #define Fast_cin ios:: ...

  5. 在myeclipse中有的项目上有个红色感叹号

    之前做项目的时候遇到过这个问题,最后确定原因是项目引用了很多放在D盘或E盘上的jar包,但是我们不小心把这些jar包删除或移动路径了,因此myeclipse识别不了出现红色的感叹号,解决方式是在mye ...

  6. KMP算法再解 (看毛片算法真是人如其名,哦不,法如其名。)

    KMP算法主要解决字符串匹配问题,其中失配数组next很关键: 看毛片算法真是人如其名,哦不,法如其名. 看了这篇博客,转载过来看一波: 原博客地址:https://blog.csdn.net/sta ...

  7. canvas+js绘制序列帧动画+面向对象

    效果: 素材: 源码:(一般的绘制方式) <!DOCTYPE html> <html lang="en"> <head> <meta ch ...

  8. 4、Caffe其它常用层及参数

    借鉴自:http://www.cnblogs.com/denny402/p/5072746.html 本文讲解一些其它的常用层,包括:softmax_loss层,Inner Product层,accu ...

  9. HQL的使用和limit的替代

    1.HQL不同于SQL,from必须是项目中table反转后对应的class的名字. 2.如何使用参数生成HQL语句: String hql = "from User where userI ...

  10. Oracle数据库学习(二):Oracle Linux下oracle、ogg的挂载与参数配置

    准备工作:打开虚拟机端的Oracle Linux Server 6.9的系统,然后使用root用户登录.打开终端界面,输入ifconfig -a查看IP地址. 然后在本地打开XShell软件使用以下命 ...