2066. 七十和十七

★★★   输入文件:xvii.in   输出文件:xvii.out   简单对比
时间限制:1 s   内存限制:256 MB

【题目描述】

七十君最近爱上了排序算法,于是Ta让十七君给Ta讲冒泡排序。

十七君给七十君讲完了冒泡排序以后,七十君回家苦思冥想,又创造了一种名

为七十排序的算法。下面是这个算法排序一个排列的过程:

首先从左到右扫描每个相邻数对。如果这两个数是逆序的,则将第二个数(也

就是小的数)放在整个排列的开头,其他数位置不变,并把计数器加一。如果

没有逆序的相邻数对了,就说明已经排好序了,算法终止。

七十君认为计数器的值反映了这个算法的运行时间。但十七君觉得七十君发明

的这个算法会很慢,所以他请你帮忙算算,对于所有长度为n的排列P,

\[E(n)=\frac{\sum f(P)}{n!}\]

的值,这里f(P)表示排列P运行算法结束时计数器的值。

【输入格式】

一行一个整数n。

【输出格式】

如果E(n)=a/b,求c使得

bc 三 a  (mod 10^9+7)

并输出,其中0≤c<10^9+7,如果e不存在输出-1。

【样例输入】

4

【样例输出】

250000005

【提示】

对于排列4 1 3 2,算法结束时计数器的值为5。

4 1 3 2,4和1形成逆序,将1放到排列最前方。

1 4 3 2,4和3形成逆序,将3放到排列最前方。

3 1 4 2,3和1形成逆序,将1放到排列最前方。

1 3 4 2,4和2形成逆序,将2放到排列最前方。

2 1 3 4,2和1形成逆序,将1放到排列最前方。

1 2 3 4,现在排列已经排序完毕。

E(4)=3.25。

数据范围与约定

对于20%的数据,n≤8。

对于40%的数据,n≤30。

对于60%的数据,n≤200。

对于1OO%的数据,n≤10^5。

题解

首先我们可以发现, 将 $n$ 个数排序的过程可以转化为按方案排序 $n-1$ 个数后将最后一个数按方案再排进去. 对于长度为 $n$ 的全排列, 若第 $n$ 个数 $a_n=n$ , 则不会引起计数器变动(因为它在前 $n-1$ 个排好序后就已经在最后了), 否则会引起计数器增加 $2^{a_n-1}$ . 枚举最后加入的数 $a_n$ 即可在 $O(n^2)$ 时间复杂度内解决. 最终表达式为:

\[ans=\sum_{i=1}^n\sum_{j=1}^{i-1}2^{j-1}\]

注意到第二部分求和为等差数列形式, 我们可以通过等差数列求和公式进行计算. 于是上式可以化简为:

\[ans=\sum_{i=1}^n\frac{2^{i-1}-1}{i}\]

参考代码

GitHub

 #include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm> const int MOD=1e9+; int Pow(int,int,int); int main(){
int n;
scanf("%d",&n);
int ans=;
for(int i=;i<=n;i++){
ans=(ans+1ll*(Pow(,i-,MOD)-+MOD)%MOD*Pow(i,MOD-,MOD)%MOD)%MOD;
}
printf("%d\n",ans);
return ;
} int Pow(int a,int n,int p){
int ans=;
while(n>){
if((n&)!=){
ans=1ll*ans*a%p;
}
a=1ll*a*a%p;
n>>=;
}
return ans;
}

Backup

[COGS 2066]七十和十七的更多相关文章

  1. [COGS 2066]七十与十七

    http://218.28.19.228/cogs/problem/problem.php?pid=2066 [题目描述] 七十君最近爱上了排序算法,于是Ta让十七君给Ta讲冒泡排序. 十七君给七十君 ...

  2. 8.22 NOIP模拟测试29(B) 爬山+学数数+七十和十七

    T1 爬山 二分最高高度,$O(1)$判断是否可行. #include<iostream> #include<cstdio> #define ll long long usin ...

  3. NOIP模拟测试29「爬山·学数数·七十和十七」

    爬山题解不想写了 学数数 离散化然后找到以每一个值为最大值的连续子段有多少个,然后开个桶维护 那么怎么找以每一个值为最大值的连续子段个数 方法1(我的极笨的方法) 考试时我的丑陋思路, 定义极左值为左 ...

  4. “全栈2019”Java第七十六章:静态、非静态内部类访问权限

    难度 初级 学习时间 10分钟 适合人群 零基础 开发语言 Java 开发环境 JDK v11 IntelliJ IDEA v2018.3 文章原文链接 "全栈2019"Java第 ...

  5. (七十八)使用第三方框架INTULocationManager实现定位

    前面(第七十五.七十六篇)讲述了如何通过CoreLocation获取位置,授权.获取等相当复杂,如果借助于第三方框架,可以简单的实现授权与定位. 首先在GitHub中搜索LocationManager ...

  6. 第三百七十九节,Django+Xadmin打造上线标准的在线教育平台—xadmin的安装

    第三百七十九节,Django+Xadmin打造上线标准的在线教育平台—xadmin的安装 xadmin介绍 xadmin是基于Django的admin开发的更完善的后台管理系统,页面基于Bootstr ...

  7. 第三百七十八节,Django+Xadmin打造上线标准的在线教育平台—django自带的admin后台管理介绍

    第三百七十八节,Django+Xadmin打造上线标准的在线教育平台—django自带的admin后台管理介绍 配置django的admin数据库管理后台 首先urls.py配置数据库后台路由映射,一 ...

  8. 第三百七十六节,Django+Xadmin打造上线标准的在线教育平台—创建用户操作app,在models.py文件生成5张表,用户咨询表、课程评论表、用户收藏表、用户消息表、用户学习表

    第三百七十六节,Django+Xadmin打造上线标准的在线教育平台—创建用户操作app,在models.py文件生成5张表,用户咨询表.课程评论表.用户收藏表.用户消息表.用户学习表 创建名称为ap ...

  9. 第三百七十五节,Django+Xadmin打造上线标准的在线教育平台—创建课程机构app,在models.py文件生成3张表,城市表、课程机构表、讲师表

    第三百七十五节,Django+Xadmin打造上线标准的在线教育平台—创建课程机构app,在models.py文件生成3张表,城市表.课程机构表.讲师表 创建名称为app_organization的课 ...

随机推荐

  1. Tomcat源码分析——Session管理分析(下)

    前言 在<TOMCAT源码分析——SESSION管理分析(上)>一文中我介绍了Session.Session管理器,还以StandardManager为例介绍了Session管理器的初始化 ...

  2. 微信小程序自学过程中遇到的问题 转

    view标签下hover必须为true时,设置hover-class才有效,hover-start-time和hover-stay-time的形式如下:   < view class=" ...

  3. 数据集DataSet

    ADO.NET数据访问技术的一个突出的特点就是支持离线访问,而实现这种离线访问技术的核心就是DateSet对象,该对象通过将数据驻留在内存来实现离线访问. DataSet对象由一组DataTable对 ...

  4. C++/CLI 本地字符串和托管字符串之间的转换

    参考: https://docs.microsoft.com/zh-cn/cpp/dotnet/overview-of-marshaling-in-cpp #include "msclr/m ...

  5. 撩课-Web大前端每天5道面试题-Day2

    1.伪类与伪元素的区别? 1) 定义区别 伪类 伪类用于选择DOM树之外的信息,或是不能用简单选择器进行表示的信息. 前者包含那些匹配指定状态的元素,比如:visited,:active:后者包含那些 ...

  6. Spring Boot学习笔记(三)实现热部署

    pom文件中添加如下依赖即可 <dependency> <groupId>org.springframework.boot</groupId> <artifa ...

  7. Java面试题之数据库三范式是什么?

    什么是范式? 简言之就是,数据库设计对数据的存储性能,还有开发人员对数据的操作都有莫大的关系.所以建立科学的,规范的的数据库是需要满足一些规范的来优化数据数据存储方式.在关系型数据库中这些规范就可以称 ...

  8. UNIX IPC: POSIX 消息队列

    首先在我的MAC OSX上试了一下虽然有_POSIX_MESSAGE_PASSING的宏定义,但是用gcc编译会提示没有mqueue.h头文件,先放一边.在Ubuntu上使用正常,不过POSIX消息队 ...

  9. latex 图形的放置

         Next: 16.3 清除未处理的浮动图形 Up: 16. 浮动图形环境 Previous: 16.1 创建浮动图形  16.2 图形的放置 图形(figure)环境有一个可选参数项允许用户 ...

  10. 仿拉手团购App8-- 更多模块

    1.获得缓存大小和清除缓存 应用内数据的所有路径: /data/data/com.xxx.xxx/cache - 应用内缓存(注:对应方法getCacheDir()) /data/data/com.x ...