CF 868 F. Yet Another Minimization Problem
F. Yet Another Minimization Problem
http://codeforces.com/contest/868/problem/F
题意:
给定一个长度为n的序列。你需要将它分为m段,每一段的代价为这一段内相同的数的对数,最小化代价总和。 n<=100000,m<=20。
分析:
f[k][j]=min{f[k-1][j]+cost(k,j,i)};
cost发现不能快速的算出。于是不能用类似单调队列+二分的方法来做了。
考虑分治,solve(Head,Tail,L,R,w)当分治区间为Head,Tail,L,R为转移的区间,那么可以直接扫一遍找到转移的最优位置k,然后分治下去。分治的过程中,维护每个数出现了几次(cnt数组),在进入下一层的时候,更新了下层用到的区间的cnt。
代码:
/*
* @Author: mjt
* @Date: 2018-10-15 11:28:17
* @Last Modified by: mjt
* @Last Modified time: 2018-10-15 14:40:30
*/
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<iostream>
#include<cctype>
#include<set>
#include<vector>
#include<queue>
#include<map>
#define fi(s) freopen(s,"r",stdin);
#define fo(s) freopen(s,"w",stdout);
using namespace std;
typedef long long LL; inline int read() {
int x=,f=;char ch=getchar();for(;!isdigit(ch);ch=getchar())if(ch=='-')f=-;
for(;isdigit(ch);ch=getchar())x=x*+ch-'';return x*f;
} const int N = ; int a[N], cnt[N];
LL f[N], g[N]; #define add(x) w += cnt[x], cnt[x] ++
#define del(x) cnt[x] --, w-= cnt[x] void solve(int Head,int Tail,int L,int R,LL w) { // w保存(L~R)中,非(Head~Tail),区间的值,即L~min(R,Head)。
if (Head > Tail) return ;
int mid = (Head + Tail) >> , p = min(R, mid), k = ;
for (int i=Head; i<=mid; ++i) add(a[i]);
for (int i=L; i<=p; ++i) {
del(a[i]); // 从i转移,所以i左边的数,不应该被算入贡献,所以要减去。
if (f[mid] > g[i] + w) f[mid] = g[i] + w, k = i;
} for (int i=Head; i<=mid; ++i) del(a[i]);
for (int i=L; i<=p; ++i) add(a[i]);
solve(Head, mid - , L, k, w); for (int i=L; i<k; ++i) del(a[i]);
for (int i=Head; i<=mid; ++i) add(a[i]);
solve(mid + , Tail, k, R, w); for (int i=Head; i<=mid; ++i) del(a[i]); // 初始为递归进来时候的cnt数组。
for (int i=L; i<k; ++i) add(a[i]);
}
int main() {
int n = read(), k = read();
for (int i=; i<=n; ++i) {
a[i] = read();
f[i] = f[i - ] + cnt[a[i]];
cnt[a[i]] ++;
}
memset(cnt, , sizeof(cnt));
while (-- k) {
swap(f, g);
memset(f, 0x3f, sizeof(f));
solve(, n, , n, );
}
cout << f[n];
return ;
}
CF 868 F. Yet Another Minimization Problem的更多相关文章
- CF868 F. Yet Another Minimization Problem 决策单调优化 分治
目录 题目链接 题解 代码 题目链接 CF868F. Yet Another Minimization Problem 题解 \(f_{i,j}=\min\limits_{k=1}^{i}\{f_{k ...
- Codeforces 868F Yet Another Minimization Problem 决策单调性 (看题解)
Yet Another Minimization Problem dp方程我们很容易能得出, f[ i ] = min(g[ j ] + w( j + 1, i )). 然后感觉就根本不能优化. 然后 ...
- Codeforces 868F Yet Another Minimization Problem(分治+莫队优化DP)
题目链接 Yet Another Minimization Problem 题意 给定一个序列,现在要把这个序列分成k个连续的连续子序列.求每个连续子序列价值和的最小值. 设$f[i][j]$为前 ...
- Yet Another Minimization Problem
Yet Another Minimization Problem 一个很显然的决策单调性. 方程是很显然的 $ f_i = \min{f_{j-1} + w(j,i)} $ . 它具有决策单调性,可以 ...
- CF 633 F. The Chocolate Spree 树形dp
题目链接 CF 633 F. The Chocolate Spree 题解 维护子数答案 子数直径 子数最远点 单子数最长直径 (最长的 最远点+一条链) 讨论转移 代码 #include<ve ...
- CF #271 F Ant colony 树
题目链接:http://codeforces.com/contest/474/problem/F 一个数组,每一次询问一个区间中有多少个数字可以整除其他所有区间内的数字. 能够整除其他所有数字的数一定 ...
- 几何入门合集 gym101968 problem F. Mirror + gym102082 Problem F Fair Chocolate-Cutting + gym101915 problem B. Ali and Wi-Fi
abstract: V const & a 加速 F. Mirror 题意 链接 问题: 有n个人在y=0的平面上(及xoz平面).z=0平面上有一面镜子(边平行于坐标轴).z=a平面上有q个 ...
- CF 494 F. Abbreviation(动态规划)
题目链接:[http://codeforces.com/contest/1003/problem/F] 题意:给出一个n字符串,这些字符串按顺序组成一个文本,字符串之间用空格隔开,文本的大小是字母+空 ...
- CF 1051 F. The Shortest Statement
F. The Shortest Statement http://codeforces.com/contest/1051/problem/F 题意: n个点,m条边的无向图,每次询问两点之间的最短路. ...
随机推荐
- 「bzoj 4025: 二分图」
题目 显然二分图没有奇环 于是考虑使用并查集维护一下看看是否存在奇环 我们可以考虑加权并查集,维护出\(x\)到\(fa_x\)的实际距离 由于我们只需要考虑奇偶性,于是我们处理出到根的路径异或一下就 ...
- php反序列化
之前听漏洞银行的一个女生讲php反序列化.她说了一句.php反序列话找public变量. 导致我以为必须php反序列化.可控的变量必须是public or protected.private私有的变量 ...
- concatenate函数
numpy.concatenate((a1, a2, ...), axis=0) Join a sequence of arrays along an existing axis.(按轴axis连接a ...
- 【转】CopyOnWriteArrayList
初识CopyOnWriteArrayList 第一次见到CopyOnWriteArrayList,是在研究JDBC的时候,每一个数据库的Driver都是维护在一个CopyOnWriteArrayLis ...
- 如何将pip更新到最新版
通过该命令即可达到目的:python -m pip install --upgrade pip pip在Python中是非常常用的,就像node.js里面的npm一样.两者共同的作用是包的管理工具.
- 对极几何(Epipolar Geometry)
基本概念 对极几何(Epipolar Geometry)是Structure from Motion问题中,在两个相机位置产生的两幅图像的之间存在的一种特殊几何关系,是sfm问题中2D-2D求解两帧间 ...
- UVALive - 6837 Kruskal+一点性质(暴力枚举)
ICPC (Isles of Coral Park City) consist of several beautiful islands. The citizens requested constru ...
- 大话Linux内核中锁机制之原子操作、自旋锁
转至:http://blog.sina.com.cn/s/blog_6d7fa49b01014q7p.html 很多人会问这样的问题,Linux内核中提供了各式各样的同步锁机制到底有何作用?追根到底其 ...
- Oracle与MySQL使用区别
与MySQL通过创建不同的数据库来存储表 Oracle提出表空间(tablespace)的概念作为逻辑上的存储区域来存储表, 而不同的表空间由不同的用户来管理 用户可以授予权限或角色 举例: 使用PL ...
- SSM(SpringMVC+Spring+Mybatis)框架学习理解
近期做到的项目中,用到的框架是SSM(SpringMVC+Spring+Mybatis).之前比较常见的是SSH.用到了自然得了解各部分的分工 spring mvc 是spring 处理web层请求的 ...