题目描述

"可爱的妹子就像有理数一样多,但是我们知道的,你在数轴上随便取一个点取到有理数的概率总是0,"芽衣在床上自顾自的说着这句充满哲理的话,"诶,柚子,我写完概率论的作业你就和我出去约会怎么样""好呀,但是你要做完才可以哦"柚子回答道,芽衣立刻从床上翻下来冲到了座位上,诶,就一道题啊,真好,题目是这样的:在一个圆上任取n个点,求由这n个点依次围成的凸n边形至少有一个锐角的概率是多少,芽衣急于和柚子去约会,当然没有心情想这一道题,于是她就来求助聪明的你啦。

输入

一个n,4<=N<=10000000000

输出

至少有一个锐角的概率,为了避免精度问题,对1e9+7取模

样例输入

136865353

样例输出

423626558


题解

微积分

显然对于一张图,如果有锐角,则一定存在逆时针方向连续的两个角分别为钝角和锐角,且这样的连续两个角仅存在一组。

那么我们对这样的部分单独分析:

我们令点 $P$ 为该钝角,点 $Q$ 为该锐角。

那么在其余的点中,点 $P$ 逆时针前一个点一定在 $\widehat{PQ'}$ 上,点 $Q$ 逆时针后一个点一定在 $\widehat{PQ'P'}$ 上。

因此其余的点一定满足条件:全部在 $\widehat{PQ'P'}$ 上,且至少有一个在 $\widehat{PQ'}$ 上。

那么满足条件的概率就是:全部在 $\widehat{PQ'P'}$ 上的概率减去全部在 $\widehat{P'Q'}$ 上的概率。

设 $\angle POQ=x\times {2\pi}$ ,那么对于剩下 $n-2$ 个有标号点,都在 $\widehat{PQ'P'}$ 上的概率为 $(\frac 12)^{n-2}$ ,都在 $\widehat{P'Q'}$ 上的概率为 $x^{n-2}$ 。

因此对于固定的 $\angle POQ= x\times {2\pi}$ ,其余 $n-2$ 个点的选择满足条件的概率为 $(\frac 12)^{n-2}-x^{n-2}$ 。

所以对于无标号的 $P$ 和 $Q$ ,有标号的剩余点选择满足条件的概率就是 $\int_0^{\frac 12}((\frac 12)^{n-2}-x^{n-2})dx=\frac{n-2}{n-1}(\frac 12)^{n-1}$ 。

由于我们考虑的情况没有讨论到 $P$ 和 $Q$ 的标号,因此还要乘上 $P$ 和 $Q$ 的标号方案数 $n(n-1)$ 。

最终答案为 $n(n-2)(\frac 12)^{n-1}$ 。

时间复杂度 $O(\log n)$ 。

#include <cstdio>
#define mod 1000000007
int main()
{
long long n , x = 500000004 , ans;
scanf("%lld" , &n) , ans = n * (n - 2) % mod , n -- ;
while(n)
{
if(n & 1) ans = ans * x % mod;
x = x * x % mod , n >>= 1;
}
printf("%lld\n" , ans);
return 0;
}

【bzoj5146】有趣的概率 微积分的更多相关文章

  1. 【BZOJ5146】有趣的概率 概率+组合数(微积分)

    [BZOJ5146]有趣的概率 Description "可爱的妹子就像有理数一样多,但是我们知道的,你在数轴上随便取一个点取到有理数的概率总是0,"芽衣在床上自顾自的说着这句充满 ...

  2. 利用 random 与 tertools 模块解决概率问题

    Python 中的 random 与 tertools 模块可以得到伪随机数与排列.组合,下面利用这两个模块求解一些有趣的概率问题. 一.random 与 tertools 模块 random 模块常 ...

  3. CF 148D Bag of mice【概率DP】

    D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes Promblem descriptio ...

  4. 【学习总结】 小白CS成长之路

    2017-9-3:入坑. 理想:敲着代码唱着歌. 现实:骨感. Step 1: 认识CS: CS大体可以分成以下几个大领域:硬件.系统.软件.网络.计算理论.计算方法. 硬 件 ---- 数字电路.集 ...

  5. Bzoj 2318 Spoj4060 game with probability Problem

    2318: Spoj4060 game with probability Problem Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 524  Sol ...

  6. BZOJ:4820: [Sdoi2017]硬币游戏&&BZOJ:1444: [Jsoi2009]有趣的游戏(高斯消元求概率)

    1444: [Jsoi2009]有趣的游戏 4820: [Sdoi2017]硬币游戏 这两道题都是关于不断随机生成字符后求出现给定字符串的概率的问题. 第一题数据范围较小,将串建成AC自动机以后,以A ...

  7. 【BZOJ1444】[Jsoi2009]有趣的游戏 AC自动机+概率DP+矩阵乘法

    [BZOJ1444][Jsoi2009]有趣的游戏 Description Input 注意 是0<=P Output Sample Input Sample Output HINT  30%的 ...

  8. BZOJ1444[Jsoi2009]有趣的游戏——AC自动机+概率DP+矩阵乘法

    题目描述 输入 注意 是0<=P, n , l, m≤ 10. 输出 样例输入 input 1 3 2 2 1 2 1 2 AB BA AA input 2 3 4 2 1 2 1 2 AABA ...

  9. BZOJ 1444 [Jsoi2009]有趣的游戏 (AC自动机 + 概率DP + Gauss)

    1444: [Jsoi2009]有趣的游戏 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1382  Solved: 498[Submit][Statu ...

随机推荐

  1. MySQL 安装 + Windows7

    Window版本 1.下载 http://dev.mysql.com/downloads/mysql/ 2.解压 如果想要让MySQL安装在指定目录,那么就将解压后的文件夹移动到指定目录,如:D:\m ...

  2. 利用 Python 分析微信好友性别和位置

    今天用到一个非常有意思的库——itchat,它已经完成了 wechat 的个人账号API接口,使爬取个人微信信息更加方便.  下载 爬取微信好友信息 这样就将你所有微信好友的信息都返回了,我们并不需要 ...

  3. Pycharm主菜单学习

    “工欲善其事,必先利其器”,这话我一直是这么坚信的! 找到一款顺手称心的工具,拥有它,熟练地使用它! Pycharm据说就是使用Python的一款最好的工具—— 于是,开始了第一步的学习----先从熟 ...

  4. hive的简单使用

    一.一些说明 1.支持的操作 hive 默认不支持updata 和 delete操作 insert也是执行缓慢,主要用于数据的计算 hive 数据类型---字符串,大部分与java一致. 2.内外表的 ...

  5. thinkphp5框架生成二维码(二)

    上篇已经讲过了SDK之类的,这个不再重复,有不知道的童鞋们,请去看上篇文章吧. 这里我用的方法比较老旧,大家有更好的方法,可以进行改良,还有linux服务器,记得给文件权限,否则生成的文件会失败的.大 ...

  6. Debian 9 + Windows 10 双系统安装体验

    很久之前就想在自己的电脑上也装个 Debian 玩玩了,最近正好有时间折腾,就踩了踩坑在笔记本上装了玩玩~ UEFI + GPT 解决启动相关的麻烦配置 如果在支持 UEFI 的电脑上安装 Debia ...

  7. 后端编程语言PHP

    | 版权声明:本文为博主原创文章,未经博主允许不得转载. 一.PHP 简介 PHP 是一种创建动态交互性站点的强有力的服务器端脚本语言. PHP 脚本在服务器上执行. 什么是 PHP?(超文本预处理器 ...

  8. 20172330 2017-2018-1 《Java程序设计》第十一周学习总结

    20172330 2017-2018-1 <程序设计与数据结构>第十一周学习总结 教材学习内容总结 本周的学习内容为集合 Android简介 Android操作系统是一种多用户的Linux ...

  9. 安装cocoa pods

    1.移除现有Ruby默认源 $gem sources --remove https://rubygems.org/ 2.使用新的源 $gem sources -a https://ruby.taoba ...

  10. 周总结<7>

    这周和3位朋友一起完成了系运动会的视频,感受很多,也学到很多. 周次 学习时间 新编代码行数 博客量 学到知识点 14 20 100 1 Html页面设计:虚拟机:(C语言)最小生成树与最短路径 Ht ...