Tensorflow框架之AlexNet
from datetime import datetime
import math
import time
import tensorflow as tf
batch_size=32
num_batches=100
n_output=100
#定义显示节点的函数
def print_activations(t):
print(t.op.name, ' ',t.get_shape().as_list()) #定义inference函数:该函数接受图像作为输入,返回最后一层pool5及相关参数
def inference(images):
parameters=[]
#设置第一层卷积操作
with tf.name_scope('conv1') as scope:
#生成权重变量
kernel=tf.Variable(tf.truncated_normal([11,11,3,64],dtype=tf.float32,stddev=1e-1),name='weights')
#做卷积操作
conv=tf.nn.conv2d(images,kernel,[1,4,4,1],padding='SAME')
#b定义偏置值初始化为0
biases=tf.Variable(tf.constant(0.0,shape=[64],dtype=tf.float32),trainable=True,name='biases')
bias=tf.nn.bias_add(conv,biases)
conv1=tf.nn.relu(bias,scope)
print_activations(conv1)
parameters+=[kernel,biases]
#添加LRN层与最大池化层
lrn1=tf.nn.lrn(conv1,4,bias=1.0,alpha=0.001/9,beta=0.75,name='lrn1')
pool1=tf.nn.max_pool(lrn1,ksize=[1,3,3,1],strides=[1,2,2,1],padding='VALID',name='pool1')
print_activations(pool1)
#设置第二层卷积操作 with tf.name_scope('conv2') as scope:
kernel=tf.Variable(tf.truncated_normal([5,5,64,192],dtype=tf.float32,stddev=1e-1),name='weights')
conv=tf.nn.conv2d(pool1,kernel,[1,1,1,1],padding='SAME')
biases=tf.Variable(tf.constant(0.0,dtype=tf.float32,shape=[192]),trainable=True,name='biases')
bias=tf.nn.bias_add(conv,biases)
conv2=tf.nn.relu(bias,name=scope)
parameters+=[kernel,biases]
print_activations(conv2)
#添加LRN层与最大池化层
lrn2=tf.nn.lrn(conv2,4,bias=1.0,alpha=0.001/9,beta=0.75,name='lrn2')
pool2=tf.nn.max_pool(lrn2,ksize=[1,3,3,1],strides=[1,2,2,1],padding='VALID',name='pool2')
print_activations(pool2) #设置第三层卷积神经网络
with tf.name_scope('conv3') as scope:
kernel=tf.Variable(tf.truncated_normal(shape=[3,3,192,384],stddev=1e-1,dtype=tf.float32),name='weights')
conv=tf.nn.conv2d(pool2,kernel,[1,1,1,1],padding='SAME')
biases=tf.Variable(tf.constant(0.0,dtype=tf.float32,shape=[384]),trainable=True,name='biases')
bias=tf.nn.bias_add(conv,biases)
conv3=tf.nn.relu(bias,name=scope)
parameters+=[kernel,biases]
print_activations(conv3) #设置设置第四层卷积神经网络
with tf.name_scope('conv4') as scope:
kernel=tf.Variable(tf.truncated_normal(shape=[3,3,384,256],stddev=1e-1,dtype=tf.float32),name='weights')
conv=tf.nn.conv2d(conv3,kernel,[1,1,1,1],padding='SAME')
biases=tf.Variable(tf.constant(0.0,dtype=tf.float32,shape=[256]),trainable=True,name='biases')
bias=tf.nn.bias_add(conv,biases)
conv4=tf.nn.relu(bias,name=scope)
parameters+=[kernel,biases]
print_activations(conv4) #设置设置第五层卷积神经网络
with tf.name_scope('conv5') as scope:
kernel=tf.Variable(tf.truncated_normal(shape=[3,3,256,256],stddev=1e-1,dtype=tf.float32),name='weights')
conv=tf.nn.conv2d(conv4,kernel,[1,1,1,1],padding='SAME')
biases=tf.Variable(tf.constant(0.0,dtype=tf.float32,shape=[256]),trainable=True,name='biases')
bias=tf.nn.bias_add(conv,biases)
conv5=tf.nn.relu(bias,name=scope)
parameters+=[kernel,biases]
print_activations(conv5)
pool5=tf.nn.max_pool(conv5,ksize=[1,3,3,1],strides=[1,2,2,1],padding='VALID',name='pool5')
print_activations(pool5)
return pool5, parameters
#设置全连接层
def all_contact(pool5,keep_prob):
pool_shape=pool5.get_shape().as_list()
nodes=[-1,pool_shape[1]*pool_shape[2]*pool_shape[3]]
densel=tf.reshape(pool5,nodes)
with tf.name_scope('fc1'):
w1=tf.Variable(tf.truncated_normal([9216,1024],stddev=1e-1),name='w1')
b1=tf.Variable(tf.constant(0.0,tf.float32,shape=[1024]),trainable=True,name='b1')
fc1=tf.nn.relu(tf.nn.bias_add(tf.matmul(densel,w1),b1))
#设置dropout层
fc1_drop=tf.nn.dropout(fc1,keep_prob)
print_activations(fc1_drop) with tf.name_scope('fc2'):
w2=tf.Variable(tf.truncated_normal([1024,1024],stddev=1e-1),name='w2')
b2=tf.Variable(tf.constant(0.0,tf.float32,shape=[1024]),trainable=True,name='b1')
fc2=tf.nn.relu(tf.nn.bias_add(tf.matmul(fc1_drop,w2),b2))
#设置dropout层
fc2_drop=tf.nn.dropout(fc2,keep_prob)
print_activations(fc2_drop) with tf.name_scope('fc3'):
w3=tf.Variable(tf.truncated_normal([1024,n_output],stddev=1e-1),name='w3')
b3=tf.Variable(tf.constant(0.0,tf.float32,shape=[n_output]),trainable=True,name='b1')
fc3=tf.nn.relu(tf.nn.bias_add(tf.matmul(fc2_drop,w3),b3))
print_activations(fc3)
return fc3 def time_tensorflow_run(session,target,info_string):
num_steps_burn_in=10
total_duration=0.0
total_duration_squared=0.0
for i in range(num_batches+num_steps_burn_in):
start_time=time.time()
_=session.run(target)
duration=time.time()-start_time
if i>=num_steps_burn_in:
if not i %10:
print('%s: step %d. duration=%.3f'%(datetime.now(),i-num_steps_burn_in,duration))
total_duration+=duration
total_duration_squared+=duration*duration
mn=total_duration/num_batches
vr=total_duration_squared/num_batches-mn*mn
sd=math.sqrt(vr)
print('%s:%s across %d steps, %.3f+/-%.3f sec / batch'%(datetime.now(),info_string,num_batches,mn,sd)) def run_benchmark():
with tf.Graph().as_default():
image_size=224
images=tf.Variable(tf.random_normal([batch_size,image_size,image_size,3],dtype=tf.float32,stddev=1e-1))
pool5,parameters=inference(images)
all_contact(pool5,1.0)
init=tf.global_variables_initializer()
sess=tf.Session()
sess.run(init)
time_tensorflow_run(sess,pool5,"Forward")
objective=tf.nn.l2_loss(pool5)
grad=tf.gradients(objective,parameters)
time_tensorflow_run(sess,grad,"Forward-backward")
run_benchmark()
Tensorflow框架之AlexNet的更多相关文章
- TensorFlow框架(3)之MNIST机器学习入门
1. MNIST数据集 1.1 概述 Tensorflow框架载tensorflow.contrib.learn.python.learn.datasets包中提供多个机器学习的数据集.本节介绍的是M ...
- TensorFlow框架(5)之机器学习实践
1. Iris data set Iris数据集是常用的分类实验数据集,由Fisher, 1936收集整理.Iris也称鸢尾花卉数据集,是一类多重变量分析的数据集.数据集包含150个数据集,分为3类, ...
- 人工智能 tensorflow框架-->简介及安装01
简介:Tensorflow是google于2015年11月开源的第二代机器学习框架. Tensorflow名字理解:图形边中流动的数据叫张量(Tensor),因此叫Tensorflow 既 张量流动 ...
- 【TensorFlow篇】--Tensorflow框架实现SoftMax模型识别手写数字集
一.前述 本文讲述用Tensorflow框架实现SoftMax模型识别手写数字集,来实现多分类. 同时对模型的保存和恢复做下示例. 二.具体原理 代码一:实现代码 #!/usr/bin/python ...
- 【TensorFlow篇】--Tensorflow框架初始,实现机器学习中多元线性回归
一.前述 TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理.Tensor(张量)意味着N维数组,Flow(流)意味着基于数据流图的计算,T ...
- 跟我学算法-吴恩达老师(超参数调试, batch归一化, softmax使用,tensorflow框架举例)
1. 在我们学习中,调试超参数是非常重要的. 超参数的调试可以是a学习率,(β1和β2,ε)在Adam梯度下降中使用, layers层数, hidden units 隐藏层的数目, learning_ ...
- 深度学习Tensorflow框架的安装
选择下载安装Anaconda3.4.2.0-python3.5版本安装(3.6版本不适合后面opencv-python的安装): 打开Anaconda Prompt命令窗口编辑界面(黑窗口),输入py ...
- 吴裕雄--天生自然 神经网络人工智能项目:基于深度学习TENSORFLOW框架的图像分类与目标跟踪报告(续四)
2. 神经网络的搭建以及迁移学习的测试 7.项目总结 通过本次水果图片卷积池化全连接试验分类项目的实践,我对卷积.池化.全连接等相关的理论的理解更加全面和清晰了.试验主要采用python高级编程语言的 ...
- python机器学习TensorFlow框架
TensorFlow框架 关注公众号"轻松学编程"了解更多. 一.简介 TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运 ...
随机推荐
- JS の 套路 I ~~
小扇在到新公司以后,发现.我的js都忘记了!! 下面总结一下在装配数据时候用到的一些小小的公式,希望像我这样的前端小菜B起到帮助叭叭叭叭叭~~~ I.查找想找到的 HTML 元素 * i.查找元素 v ...
- iOS OC与JS的交互(JavaScriptCore实现)
本文包括JS调用OC方法并传值,OC调用JS方法并传值 本来想把html放进服务器里面,然后访问,但是觉得如果html在本地加载更有助于理解,特把html放进项目里 HTML代码 <!DOCTY ...
- JS-面向对象相关
onload 初始化 类似 构造函数初始化对象 全局变量 -> 属性 函数 -> 方法 面向对象中最重要的就是 this的理解 this报错的原因 定时器的使用 function ...
- Redis 单机和多实例部署
作者:北京运维 1. 安装环境说明 OS 版本:CentOS 7.5.1804 Redis 版本:redis-3.2.12 Redis 下载页面:http://download.redis.io/re ...
- swiper 仿淘宝详情页面 视频图片切换
1.好兄弟,看一下是否是你需要的 2.废话不多说 直接上代码,复制粘贴一下 自己引用一下swiper.js和css 然后就可以开始玩儿了 <!DOCTYPE html> <html& ...
- MyEclipse报错:com.mysql.jdbc.exceptions.jdbc4.CommunicationsException Communications link failure
数据库服务没有开或者是驱动那块的问题
- php 获取当前完整url地址
echo $url = $_SERVER["REQUEST_SCHEME"].'://'.$_SERVER["SERVER_NAME"].$_SERVER[&q ...
- centos6.9安装虚拟机kvm
说明 以下所有操作都基于centos6.9 查看系统是否支持虚拟化 结果有vmx|svm才支持虚拟化 egrep '(vmx|svm)' --color=always /proc/cpuinfo 系统 ...
- 请简述以下两个for 循环的优缺点
今天笔试时候遇到一个问题,找到相似的. ; i<N; i++) { if (condition) DoSomething(); else DoOtherthing(); } if (condit ...
- python多进程详解和协程
1.由于python多线程适合于多IO操作,但不适合于cpu计算型工作,这时候可以通过多进程实现.python多进程简单实用 # 多进程,可以cpu保持一致,python多线程适合多io.对于高cpu ...