Problem Description
I used to think I could be anything, but now I know that I couldn't do anything. So I started traveling.

The
nation looks like a connected bidirectional graph, and I am randomly
walking on it. It means when I am at node i, I will travel to an
adjacent node with the same probability in the next step. I will pick up
the start node randomly (each node in the graph has the same
probability.), and travel for d steps, noting that I may go through some
nodes multiple times.

If I miss some sights at a node, it will
make me unhappy. So I wonder for each node, what is the probability that
my path doesn't contain it.

 
Input
The first line contains an integer T, denoting the number of the test cases.

For
each test case, the first line contains 3 integers n, m and d, denoting
the number of vertices, the number of edges and the number of steps
respectively. Then m lines follows, each containing two integers a and
b, denoting there is an edge between node a and node b.

T<=20,
n<=50, n-1<=m<=n*(n-1)/2, 1<=d<=10000. There is no
self-loops or multiple edges in the graph, and the graph is connected.
The nodes are indexed from 1.

 
Output
For each test cases, output n lines, the i-th line containing the desired probability for the i-th node.

Your answer will be accepted if its absolute error doesn't exceed 1e-5.

 
Sample Input
2
5 10 100
1 2
2 3
3 4
4 5
1 5
2 4
3 5
2 5
1 4
1 3
10 10 10
1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 9
9 10
4 9
 
Sample Output
0.0000000000
0.0000000000
0.0000000000
0.0000000000
0.0000000000
0.6993317967
0.5864284952
0.4440860821
0.2275896991
0.4294074591
0.4851048742
0.4896018842
0.4525044250
0.3406567483
0.6421630037
 
题目大意:给一张无根无向图(n个节点,m条边),每一步走哪一个儿子节点的概率相同(以哪个点为起点的概率也相同)。对于每个点,找出走完d步后走不到该点的概率。
题目分析:定义dp(s,u)表示不经过节点i(1<=i<=n)走了s步时,到达u点的概率。则根据加法原理,dp(s,son)=sum(dp(s-1,u)*f),其中 f 是u走到其儿子son的概率,f=1.0/(u的儿子个数)。题目要求分别输出不经过节点 i (1<=i<=n) 的答案,则DP n次即可。对于每次DP,根据加法原理,答案为ans=sum(dp(d,j)),其中,j不等于i。
 
注意:第一步是从起点开始的,而选择起点的过程不能算做一步。
 
代码如下:
# include<iostream>
# include<cstdio>
# include<vector>
# include<cstring>
# include<algorithm>
using namespace std;
vector<int>v[55];
int n,m,d,vis[10005][55];
double dp[10005][55];
void solve()
{
for(int i=1;i<=n;++i){
memset(dp,0,sizeof(dp));
for(int j=1;j<=n;++j)
dp[0][j]=1.0/n;
for(int j=1;j<=d;++j){
for(int start=1;start<=n;++start){
if(i==start)
continue;
int l=v[start].size();
for(int k=0;k<l;++k)
dp[j][v[start][k]]+=dp[j-1][start]*1.0/l;
}
}
double ans=0.0;
for(int j=1;j<=n;++j)
if(j!=i)
ans+=dp[d][j];
printf("%.10lf\n",ans);
}
}
int main()
{
int T,a,b;
vector<int>::iterator it;
scanf("%d",&T);
while(T--)
{
memset(vis,0,sizeof(vis));
scanf("%d%d%d",&n,&m,&d);
for(int i=1;i<=n;++i)
v[i].clear();
while(m--)
{
scanf("%d%d",&a,&b);
it=find(v[a].begin(),v[a].end(),b);
if(it==v[a].end())
v[a].push_back(b);
it=find(v[b].begin(),v[b].end(),a);
if(it==v[b].end())
v[b].push_back(a);
}
solve();
}
return 0;
}

  

HDU-5001 Walk (概率DP)的更多相关文章

  1. Hdu 5001 Walk 概率dp

    Walk Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5001 Desc ...

  2. HDU - 5001 Walk(概率dp+记忆化搜索)

    Walk I used to think I could be anything, but now I know that I couldn't do anything. So I started t ...

  3. HDU 3853LOOPS(简单概率DP)

    HDU 3853    LOOPS 题目大意是说人现在在1,1,需要走到N,N,每次有p1的可能在元位置不变,p2的可能走到右边一格,有p3的可能走到下面一格,问从起点走到终点的期望值 这是弱菜做的第 ...

  4. HDU - 1099 - Lottery - 概率dp

    http://acm.hdu.edu.cn/showproblem.php?pid=1099 最最简单的概率dp,完全是等概率转移. 设dp[i]为已有i张票,还需要抽几次才能集齐的期望. 那么dp[ ...

  5. HDU 4405 【概率dp】

    题意: 飞行棋,从0出发要求到n或者大于n的步数的期望.每一步可以投一下筛子,前进相应的步数,筛子是常见的6面筛子. 但是有些地方可以从a飞到大于a的b,并且保证每个a只能对应一个b,而且可以连续飞, ...

  6. HDU 4576 Robot(概率dp)

    题目 /*********************复制来的大致题意********************** 有N个数字,M个操作, 区间L, R. 然后问经过M个操作后落在[L, R]的概率. * ...

  7. HDU 5001 Walk

    解题思路:这是一道简单的概率dp,只要处理好相关的细节就可以了. dp[d][i]表示走d步时走到i的改概率,具体参考代码: #include<cstdio> #include<cs ...

  8. HDU 4599 Dice (概率DP+数学+快速幂)

    题意:给定三个表达式,问你求出最小的m1,m2,满足G(m1) >= F(n), G(m2) >= G(n). 析:这个题是一个概率DP,但是并没有那么简单,运算过程很麻烦. 先分析F(n ...

  9. [HDU 4089]Activation[概率DP]

    题意: 有n个人排队等着在官网上激活游戏.Tomato排在第m个. 对于队列中的第一个人.有以下情况: 1.激活失败,留在队列中等待下一次激活(概率为p1) 2.失去连接,出队列,然后排在队列的最后( ...

  10. hdu 3853 LOOPS 概率DP

    简单的概率DP入门题 代码如下: #include<iostream> #include<stdio.h> #include<algorithm> #include ...

随机推荐

  1. 4 个技巧学习 Golang

    到达 Golang 大陆:一位资深开发者之旅. 2014 年夏天…… IBM:“我们需要你弄清楚这个 Docker.” 我:“没问题.” IBM:“那就开始吧.” 我:“好的.”(内心声音):”Doc ...

  2. 在 Linux 中使用超级用户权限

    在你想要使用超级权限临时运行一条命令时,sudo 命令非常方便,但是当它不能如你期望的工作时,你也会遇到一些麻烦.比如说你想在某些日志文件结尾添加一些重要的信息,你可能会尝试这样做: $ echo & ...

  3. python之路----进程二

    守护进程 会随着主进程的结束而结束. 主进程创建守护进程 其一:守护进程会在主进程代码执行结束后就终止 其二:守护进程内无法再开启子进程,否则抛出异常:AssertionError: daemonic ...

  4. QAQ的LIS树 QAQ的LIS树2 题解报告

    这两道题实际上考试的时候是一道题OwO 太可怕了,忙了我三个多小时,写了整整7K 这个题两个询问关联性不强,所以分开来考虑 QAQ的LIS树 考虑如何用dp求解答案 设dp(v)表示v到根的修改后的序 ...

  5. mysql查询操作1

    ##1.在已有的表中插入一行记录 insert into tb_name values("",""...); ##2.查询语句的框架和用法 select 字段名 ...

  6. Tomcat上发布webservices的war工程,访问异常404

    Tomcat上发布webservices的war工程,访问异常404 Tomcat部署正常.war导出工程正常.Tomcat自带的工程可以正常访问: 问题: webservices工程访问异常404 ...

  7. HTML 和 JavaScript 编写简单的 404 界面

    编写简单的 404 界面,也可以用来做 500 报错界面,还会飘东西,特别好,蛮漂亮的! <!DOCTYPE html> <html> <head> <met ...

  8. python监控端口脚本[jkport2.0.py]

    #!/usr/bin/env python #!coding=utf-8 import os import time import sys import smtplib from email.mime ...

  9. CEF解决加载慢问题

    转载:http://blog.csdn.net/weolar/article/details/51994895 CEF加载慢的时候,加上以下代码,通过命令行的方式: CefRefPtr<CefC ...

  10. @Transactional引起的NullPointerException

    https://github.com/hengyunabc/spring-boot-inside/tree/master/demo-Transactional-NullPointerException ...