Perfect Election
Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 438   Accepted: 223

Description

In a country (my memory fails to say which), the candidates {1, 2 ..., N} are running in the parliamentary election. An opinion poll asks the question "For any two candidates of your own choice, which election result would make you happy?". The accepted answers are shown in the table below, where the candidates i and j are not necessarily different, i.e. it may happen that i=j. There are M poll answers, some of which may be similar or identical. The problem is to decide whether there can be an election outcome (It may happen that all candidates fail to be elected, or all are elected, or only a part of them are elected. All these are acceptable election outcomes.) that conforms to all M answers. We say that such an election outcome is perfect. The result of the problem is 1 if a perfect election outcome does exist and 0 otherwise.

Input

Each data set corresponds to an instance of the problem and starts with two integral numbers: 1≤N≤1000 and 1≤M≤1000000. The data set continues with M pairs ±i ±j of signed numbers, 1≤i,j≤N. Each pair encodes a poll answer as follows:

Accepted answers to the poll question Encoding
I would be happy if at least one from i and j is elected. +i +j
I would be happy if at least one from i and j is not elected. -i -j
I would be happy if i is elected or j is not elected or both events happen. +i -j
I would be happy if i is not elected or j is elected or both events happen. -i +j

The input data are separated by white spaces, terminate with an end of file, and are correct.

Output

For each data set the program prints the result of the encoded election problem. The result, 1 or 0, is printed on the standard output from the beginning of a line. There must be no empty lines on output.

Sample Input

3 3  +1 +2  -1 +2  -1 -3
2 3 -1 +2 -1 -2 +1 -2
2 4 -1 +2 -1 -2 +1 -2 +1 +2
2 8 +1 +2 +2 +1 +1 -2 +1 -2 -2 +1 -1 +1 -2 -2 +1 -1

Sample Output

1
1
0
1

Hint

For the first data set the result of the problem is 1; there are several perfect election outcomes, e.g. 1 is not elected, 2 is elected, 3 is not elected. The result for the second data set is justified by the perfect election outcome: 1 is not elected, 2 is not elected. The result for the third data set is 0. According to the answers -1 +2 and -1 -2 the candidate 1 must not be elected, whereas the answers +1 -2 and +1 +2 say that candidate 1 must be elected. There is no perfect election outcome. For the fourth data set notice that there are similar or identical poll answers and that some answers mention a single candidate. The result is 1.

Source

大致题意:

    有n个候选人,m组要求,每组要求关系到候选人中的两个人,“+i +j”代表i和j中至少有一人被选中,“-i -j”代表i和j中至少有一人不被选中。“+i -j”代表i被选中和j不被选中这两个事件至少发生一个,“-i +j”代表i不被选中和j被选中这两个事件至少发生一个。问是否存在符合所有m项要求的方案存在。
 
#include<iostream>
#include<cstdio>
#include<cstring> using namespace std; const int VM=;
const int EM=; struct Edge{
int to,nxt;
}edge[EM<<]; int n,m,cnt,dep,top,atype,head[VM];
int dfn[VM],low[VM],vis[VM],belong[VM];
int stack[VM]; void Init(){
cnt=, atype=, dep=, top=;
memset(head,-,sizeof(head));
memset(vis,,sizeof(vis));
memset(low,,sizeof(low));
memset(dfn,,sizeof(dfn));
memset(belong,,sizeof(belong));
} void addedge(int cu,int cv){
edge[cnt].to=cv; edge[cnt].nxt=head[cu]; head[cu]=cnt++;
} void Tarjan(int u){
dfn[u]=low[u]=++dep;
stack[top++]=u;
vis[u]=;
for(int i=head[u];i!=-;i=edge[i].nxt){
int v=edge[i].to;
if(!dfn[v]){
Tarjan(v);
low[u]=min(low[u],low[v]);
}else if(vis[v])
low[u]=min(low[u],dfn[v]);
}
int j;
if(dfn[u]==low[u]){
atype++;
do{
j=stack[--top];
belong[j]=atype;
vis[j]=;
}while(u!=j);
}
} int abs(int x){
return x<?-x:x;
} int main(){ //freopen("input.txt","r",stdin); while(~scanf("%d%d",&n,&m)){
Init();
int u,v;
for(int i=;i<m;i++){
scanf("%d%d",&u,&v);
int a=abs(u), b=abs(v);
if(u> && v>){
addedge(a+n,b);
addedge(b+n,a);
}
if(u< && v<){
addedge(a,b+n);
addedge(b,a+n);
}
if(u> && v<){
addedge(a+n,b+n);
addedge(b,a);
}
if(u< && v>){
addedge(a,b);
addedge(b+n,a+n);
}
}
for(int i=;i<=*n;i++)
if(!dfn[i])
Tarjan(i);
int ans=;
for(int i=;i<=n;i++)
if(belong[i]==belong[i+n]){
ans=;
break;
}
printf("%d\n",ans);
}
return ;
}

POJ 3905 Perfect Election (2-Sat)的更多相关文章

  1. POJ 3905 Perfect Election(2-sat)

    POJ 3905 Perfect Election id=3905" target="_blank" style="">题目链接 思路:非常裸的 ...

  2. POJ 3678 Katu Puzzle(2 - SAT) - from lanshui_Yang

    Description Katu Puzzle is presented as a directed graph G(V, E) with each edge e(a, b) labeled by a ...

  3. poj 1543 Perfect Cubes(注意剪枝)

    Perfect Cubes Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 14901   Accepted: 7804 De ...

  4. POJ 3905 Perfect Election

    2-SAT 裸题,搞之 #include<cstdio> #include<cstring> #include<cmath> #include<stack&g ...

  5. POJ 3905 Perfect Election (2-SAT 判断可行)

    题意:有N个人参加选举,有M个条件,每个条件给出:i和j竞选与否会只要满足二者中的一项即可.问有没有方案使M个条件都满足. 分析:读懂题目即可发现是2-SAT的问题.因为只要每个条件中满足2个中的一个 ...

  6. POJ 3398 Perfect Service(树型动态规划,最小支配集)

    POJ 3398 Perfect Service(树型动态规划,最小支配集) Description A network is composed of N computers connected by ...

  7. Luogu 1894 [USACO4.2]完美的牛栏The Perfect Stall / POJ 1274 The Perfect Stall(二分图最大匹配)

    Luogu 1894 [USACO4.2]完美的牛栏The Perfect Stall / POJ 1274 The Perfect Stall(二分图最大匹配) Description 农夫约翰上个 ...

  8. POJ 2376 Cleaning Shifts(轮班打扫)

    POJ 2376 Cleaning Shifts(轮班打扫) Time Limit: 1000MS   Memory Limit: 65536K [Description] [题目描述] Farmer ...

  9. POJ 3253 Fence Repair(修篱笆)

    POJ 3253 Fence Repair(修篱笆) Time Limit: 2000MS   Memory Limit: 65536K [Description] [题目描述] Farmer Joh ...

随机推荐

  1. mysql zerofill 的使用

    转自:http://www.jquerycn.cn/blog/mysql/ 那这个int[M]中M是什么意义喃,在定义数值型数据类型的时候,可以在关键字括号内指定整数值(如:int(M),M的最大值为 ...

  2. ImportError DLL load failed: %1 不是有效的 Win32 应用程序

    操作系统:win7 64位,安装mysqldb 后提示:ImportError DLL load failed: %1 不是有效的 Win32 应用程序,是由于安装的32位的 MySQL-Python ...

  3. jQuery 1

    <!DOCTYPE html> <html lang="zh-cn"> <head> <meta charset="utf-8& ...

  4. keytab生成不了

    vim /var/kerberos/krb5kdc/kadm5.acl 将*e改成* /etc/init.d/kadmin restart 重启kadmin

  5. POJ2429_GCD &amp; LCM Inverse【Miller Rabin素数測试】【Pollar Rho整数分解】

    GCD & LCM Inverse Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 9756Accepted: 1819 ...

  6. python获取PING结果

    # -*- coding: utf-8 -*- import subprocess import re def get_ping_result(ip_address): p = subprocess. ...

  7. ReactNative踩坑日志——如何实现删除scrollview中的视图

    在reactNative中,页面是根据state值的变化来重新渲染的.因此,传统的前端开发中通过 id 来移除一个页面元素的做法在这里不适用. 一般,我们是通过遍历数组或map来渲染出scrollvi ...

  8. SSM实战——秒杀系统之创建项目、管理依赖、设计数据库

    注:本项目使用Myeclipse开发. 一:项目创建 1:使用Myeclipse创建一个web project,命名为MySeckill,并转换为Maven项目. 2:创建项目文件目录如下: 上面四个 ...

  9. 在vim中安装及配置NERDTree插件

    使用Vundle插件安装,在.vimrc中加入以下代码: Plugin 'scrooloose/nerdtree' 打开vim,输入命令如下: :BundleInstall 等待安装完毕 配置NERD ...

  10. Oracle列自增实现(2)-Identity Columns in Oracle Database 12c Release 1 (12.1)

    Oracle列自增-Identity Columns in Oracle Database 12c Release 1 (12.1) 在ORACLE 12C以前的版本中,如果要实现列自增长,需要通过序 ...