POJ 3905 Perfect Election (2-Sat)
Perfect Election
Description In a country (my memory fails to say which), the candidates {1, 2 ..., N} are running in the parliamentary election. An opinion poll asks the question "For any two candidates of your own choice, which election result would make you happy?". The accepted answers are shown in the table below, where the candidates i and j are not necessarily different, i.e. it may happen that i=j. There are M poll answers, some of which may be similar or identical. The problem is to decide whether there can be an election outcome (It may happen that all candidates fail to be elected, or all are elected, or only a part of them are elected. All these are acceptable election outcomes.) that conforms to all M answers. We say that such an election outcome is perfect. The result of the problem is 1 if a perfect election outcome does exist and 0 otherwise.
Input Each data set corresponds to an instance of the problem and starts with two integral numbers: 1≤N≤1000 and 1≤M≤1000000. The data set continues with M pairs ±i ±j of signed numbers, 1≤i,j≤N. Each pair encodes a poll answer as follows:
The input data are separated by white spaces, terminate with an end of file, and are correct. Output For each data set the program prints the result of the encoded election problem. The result, 1 or 0, is printed on the standard output from the beginning of a line. There must be no empty lines on output.
Sample Input 3 3 +1 +2 -1 +2 -1 -3 Sample Output 1 Hint For the first data set the result of the problem is 1; there are several perfect election outcomes, e.g. 1 is not elected, 2 is elected, 3 is not elected. The result for the second data set is justified by the perfect election outcome: 1 is not elected, 2 is not elected. The result for the third data set is 0. According to the answers -1 +2 and -1 -2 the candidate 1 must not be elected, whereas the answers +1 -2 and +1 +2 say that candidate 1 must be elected. There is no perfect election outcome. For the fourth data set notice that there are similar or identical poll answers and that some answers mention a single candidate. The result is 1.
Source |
大致题意:
#include<iostream>
#include<cstdio>
#include<cstring> using namespace std; const int VM=;
const int EM=; struct Edge{
int to,nxt;
}edge[EM<<]; int n,m,cnt,dep,top,atype,head[VM];
int dfn[VM],low[VM],vis[VM],belong[VM];
int stack[VM]; void Init(){
cnt=, atype=, dep=, top=;
memset(head,-,sizeof(head));
memset(vis,,sizeof(vis));
memset(low,,sizeof(low));
memset(dfn,,sizeof(dfn));
memset(belong,,sizeof(belong));
} void addedge(int cu,int cv){
edge[cnt].to=cv; edge[cnt].nxt=head[cu]; head[cu]=cnt++;
} void Tarjan(int u){
dfn[u]=low[u]=++dep;
stack[top++]=u;
vis[u]=;
for(int i=head[u];i!=-;i=edge[i].nxt){
int v=edge[i].to;
if(!dfn[v]){
Tarjan(v);
low[u]=min(low[u],low[v]);
}else if(vis[v])
low[u]=min(low[u],dfn[v]);
}
int j;
if(dfn[u]==low[u]){
atype++;
do{
j=stack[--top];
belong[j]=atype;
vis[j]=;
}while(u!=j);
}
} int abs(int x){
return x<?-x:x;
} int main(){ //freopen("input.txt","r",stdin); while(~scanf("%d%d",&n,&m)){
Init();
int u,v;
for(int i=;i<m;i++){
scanf("%d%d",&u,&v);
int a=abs(u), b=abs(v);
if(u> && v>){
addedge(a+n,b);
addedge(b+n,a);
}
if(u< && v<){
addedge(a,b+n);
addedge(b,a+n);
}
if(u> && v<){
addedge(a+n,b+n);
addedge(b,a);
}
if(u< && v>){
addedge(a,b);
addedge(b+n,a+n);
}
}
for(int i=;i<=*n;i++)
if(!dfn[i])
Tarjan(i);
int ans=;
for(int i=;i<=n;i++)
if(belong[i]==belong[i+n]){
ans=;
break;
}
printf("%d\n",ans);
}
return ;
}
POJ 3905 Perfect Election (2-Sat)的更多相关文章
- POJ 3905 Perfect Election(2-sat)
POJ 3905 Perfect Election id=3905" target="_blank" style="">题目链接 思路:非常裸的 ...
- POJ 3678 Katu Puzzle(2 - SAT) - from lanshui_Yang
Description Katu Puzzle is presented as a directed graph G(V, E) with each edge e(a, b) labeled by a ...
- poj 1543 Perfect Cubes(注意剪枝)
Perfect Cubes Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 14901 Accepted: 7804 De ...
- POJ 3905 Perfect Election
2-SAT 裸题,搞之 #include<cstdio> #include<cstring> #include<cmath> #include<stack&g ...
- POJ 3905 Perfect Election (2-SAT 判断可行)
题意:有N个人参加选举,有M个条件,每个条件给出:i和j竞选与否会只要满足二者中的一项即可.问有没有方案使M个条件都满足. 分析:读懂题目即可发现是2-SAT的问题.因为只要每个条件中满足2个中的一个 ...
- POJ 3398 Perfect Service(树型动态规划,最小支配集)
POJ 3398 Perfect Service(树型动态规划,最小支配集) Description A network is composed of N computers connected by ...
- Luogu 1894 [USACO4.2]完美的牛栏The Perfect Stall / POJ 1274 The Perfect Stall(二分图最大匹配)
Luogu 1894 [USACO4.2]完美的牛栏The Perfect Stall / POJ 1274 The Perfect Stall(二分图最大匹配) Description 农夫约翰上个 ...
- POJ 2376 Cleaning Shifts(轮班打扫)
POJ 2376 Cleaning Shifts(轮班打扫) Time Limit: 1000MS Memory Limit: 65536K [Description] [题目描述] Farmer ...
- POJ 3253 Fence Repair(修篱笆)
POJ 3253 Fence Repair(修篱笆) Time Limit: 2000MS Memory Limit: 65536K [Description] [题目描述] Farmer Joh ...
随机推荐
- 如何使用Android studio打开eclipse项目
转: http://blog.csdn.net/zcw93219/article/details/50770445
- ASP入门(十四)-FileSystemObject 对象
File Access 组件中常见的对象有 FileSystemObject.TextStream.File.Folder.Drive等,其中每一个对象都有不同的属性和方法,我们将会在用到的时候进行详 ...
- 内建DNS服务器--BIND
参考 BIND 官网:http://www.isc.org/downloads/bind/ 1.系统环境说明 [root@clsn6 ~]# cat /etc/redhat-release CentO ...
- Bridging and Bonding with CentOS 6.5
eth0和eth1要做bond,然后kvm虚拟机通过bridge与外界通信. 那么就要在bond上做bridge.配置文件例如以下,实測这样配置,能够从kvm虚拟机ping通外界拓扑. ifcfg-e ...
- centos7.2安装社区版docker-ce-17.06.1
先yum install安装如下包: container-selinux-2.21-1.el7.noarch libcgroup-0.41-13.el7.x86_64 libtool-ltdl-2.4 ...
- Binary Search二分法搜索C++程序
二分法基本上学计算机的都听过,但是有人不知道的就是其实二分法是减治法的思想. 所谓减治法和分治法有一个主要差别就是减治法是减去一般,就是分治之后只需要解决原问题的一半就可以了得到全局问题的解了.所以速 ...
- 定制保存top输出信息的格式详解
top命令的重要性和使用方法不多说了,这里终点讨论如何保存top命令的输出信息. 保存top命令的输出到一个文件的方法是:top -n1b > topinfo.txt,这没什么好奇的,但 ...
- https 简介学习
https://program-think.blogspot.com/2014/11/https-ssl-tls-1.html https://program-think.blogspot.com/2 ...
- form表单提交,Servlet接收并读取Excel文件
首先是jsp页面: <body scroll=no style="overflow-y:hidden;" onselectstart="return false&q ...
- Java多线程中的内存模型
转载请注明原文地址:http://www.cnblogs.com/ygj0930/p/6536131.html 一:现代计算机的高速缓存 在计算机组成原理中讲到,现代计算机为了匹配 计算机存储设备的 ...