E. Andrew and Taxi
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Andrew prefers taxi to other means of transport, but recently most taxi drivers have been acting inappropriately. In order to earn more money, taxi drivers started to drive in circles. Roads in Andrew's city are one-way, and people are not necessary able to travel from one part to another, but it pales in comparison to insidious taxi drivers.

The mayor of the city decided to change the direction of certain roads so that the taxi drivers wouldn't be able to increase the cost of the trip endlessly. More formally, if the taxi driver is on a certain crossroads, they wouldn't be able to reach it again if he performs a nonzero trip.

Traffic controllers are needed in order to change the direction the road goes. For every road it is known how many traffic controllers are needed to change the direction of the road to the opposite one. It is allowed to change the directions of roads one by one, meaning that each traffic controller can participate in reversing two or more roads.

You need to calculate the minimum number of traffic controllers that you need to hire to perform the task and the list of the roads that need to be reversed.

Input

The first line contains two integers nn and mm (2≤n≤1000002≤n≤100000, 1≤m≤1000001≤m≤100000) — the number of crossroads and the number of roads in the city, respectively.

Each of the following mm lines contain three integers uiui, vivi and cici (1≤ui,vi≤n1≤ui,vi≤n, 1≤ci≤1091≤ci≤109, ui≠viui≠vi) — the crossroads the road starts at, the crossroads the road ends at and the number of traffic controllers required to reverse this road.

Output

In the first line output two integers the minimal amount of traffic controllers required to complete the task and amount of roads kk which should be reversed. kk should not be minimized.

In the next line output kk integers separated by spaces — numbers of roads, the directions of which should be reversed. The roads are numerated from 11 in the order they are written in the input. If there are many solutions, print any of them.

Examples
input

Copy
5 6
2 1 1
5 2 6
2 3 2
3 4 3
4 5 5
1 5 4
output

Copy
2 2
1 3
input

Copy
5 7
2 1 5
3 2 3
1 3 3
2 4 1
4 3 5
5 4 1
1 5 3
output

Copy
3 3
3 4 7
Note

There are two simple cycles in the first example: 1→5→2→11→5→2→1 and 2→3→4→5→22→3→4→5→2. One traffic controller can only reverse the road 2→12→1 and he can't destroy the second cycle by himself. Two traffic controllers can reverse roads 2→12→1 and 2→32→3 which would satisfy the condition.

In the second example one traffic controller can't destroy the cycle 1→3→2→11→3→2→1. With the help of three controllers we can, for example, reverse roads 1→31→3 ,2→42→4, 1→51→5.

【题意】

给定一张有向图,每条边有边权。你可以花费边权的代价反转一条边,使得原图中没有环。

1、输出最小化的反转的边权的最大值和要反转几条边k(k不必为最小数量)

2、输出你要反转的k条边的序号。(在满足最小化最大值的前提下,任何一种方案皆可)

【分析】

转化为有些边可以翻转,有些边不可以翻转,使得图中没有环。由此二分答案

我们把不能反向的边拿出来,然后跑拓扑排序判环,如果有环则无解,不然一定有一种方案,加入那些可以改变方向的边而不产生环。

新加的边方向:拓扑序小的连向拓扑序大的

Attached official solution.

Suppose we have k traffic controllers. They can turn all edges whose weight is less than or equal to k. Then let's remove all these edges from the graph, make a topological sorting of the remaining graph, and orient the other edges in the order of topological sorting. If there are cycles left in the graph after removing the edges, then we cannot get rid of them, having k traffic controllers. Otherwise, by adding edges we will not add new loops. The parameter k can be iterated through a binary search. Also in binary search, you can go through not all possible values of k, but only the values that are on the edges.

Complexity — O((n+m)logC) or O((n+m)logm).

【代码】

#include<stack>
#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#define debug(x) cerr<<#x<<" "<<x<<'\n';
using namespace std;
inline int read(){
register char ch=getchar();register int x=0;
for(;ch<'0'||ch>'9';ch=getchar());
for(;ch>='0'&&ch<='9';ch=getchar()) x=(x<<3)+(x<<1)+ch-'0';
return x;
}
const int N=1e5+5;
int n,m,cct,in[N],dfn[N],rec[N];
struct data{
int x,y,z;
data(int _x=0,int _y=0,int _z=0){
x=_x;y=_y;z=_z;
}
}b[N];
struct edge{int v,next;}e[N];int tot,head[N];
inline void add(int x,int y){
e[++tot].v=y;e[tot].next=head[x];head[x]=tot;
}
inline bool topo(){
stack<int>s;int cnt=0;
for(int i=1;i<=n;i++) if(!in[i]) s.push(i),dfn[i]=++cnt;
while(!s.empty()){
int x=s.top();s.pop();
for(int j=head[x];j;j=e[j].next){
int v=e[j].v;
if(!--in[v]) s.push(v),dfn[v]=++cnt;
}
}
return cnt==n;
}
#define m(a) memset(a,0,(sizeof a[0])*(n+1));
inline bool check(int now){
m(in);m(dfn);m(head);tot=0;
for(int i=1;i<=m;i++)
if(b[i].z>now)
add(b[i].x,b[i].y),in[b[i].y]++;
return topo();
}
int main(){
n=read();m=read();
int l=0,r=0,mid,ans=0;
for(int i=1,x,y,z;i<=m;i++) x=read(),y=read(),z=read(),b[i]=data(x,y,z),r=max(r,z);
while(l<=r){
mid=l+r>>1;
if(check(mid)){
ans=mid;
r=mid-1;
}
else{
l=mid+1;
}
}
printf("%d ",ans);
check(ans);
for(int i=1;i<=m;i++){
if(dfn[b[i].x]>dfn[b[i].y]){
rec[++cct]=i;
}
}
printf("%d\n",cct);
for(int i=1;i<=cct;i++) printf("%d ",rec[i]);
return 0;
}
 

CF 1100E Andrew and Taxi(二分答案)的更多相关文章

  1. CF1100E Andrew and Taxi 二分答案+拓扑排序

    \(\color{#0066ff}{ 题目描述 }\) 给定一个有向图,改变其中某些边的方向,它将成为一个有向无环图. 现在求一个改变边方向的方案,使得所选边边权的最大值最小. \(\color{#0 ...

  2. CF 672D Robin Hood(二分答案)

    D. Robin Hood time limit per test 1 second memory limit per test 256 megabytes input standard input ...

  3. CF1100E Andrew and Taxi

    题目地址:CF1100E Andrew and Taxi 二分,每次取到一个 \(mid\) ,只保留长度 \(>mid\) 的边 dfs判环,若有环,说明 \(ans>mid\) ,否则 ...

  4. CF 371C-Hamburgers[二分答案]

    C. Hamburgers time limit per test 1 second memory limit per test 256 megabytes input standard input ...

  5. Cf Round #403 B. The Meeting Place Cannot Be Changed(二分答案)

    The Meeting Place Cannot Be Changed 我发现我最近越来越zz了,md 连调程序都不会了,首先要有想法,之后输出如果和期望的不一样就从输入开始一步一步地调啊,tmd现在 ...

  6. E. Andrew and Taxi(二分+拓扑判环)

    题目链接:http://codeforces.com/contest/1100/problem/E 题目大意:给你n和m,n代表有n个城市,m代表有m条边,然后m行输入三个数,起点,终点,花费.,每一 ...

  7. [CF#592 E] [二分答案] Minimizing Difference

    链接:http://codeforces.com/contest/1244/problem/E 题意: 给定包含$n$个数的数组,你可以执行最多k次操作,使得数组的一个数加1或者减1. 问合理的操作, ...

  8. E - Andrew and Taxi-二分答案-topo判环

    E - Andrew and Taxi 思路 :min max   明显二分答案,二分需要破坏的那些边的中机器人数量最多的那个. check 过程建边时直接忽略掉小于 mid 的边,这样去检验有无环存 ...

  9. CF-1100 E Andrew and Taxi

    CF-1100E Andrew and Taxi https://codeforces.com/contest/1100/problem/E 知识点: 二分 判断图中是否有环 题意: 一个有向图,每边 ...

随机推荐

  1. 【Intel AF 2.1 学习笔记一】AF程序结构

    Intel App Framework(原jqMobi)是用来开发hybrid app的开源免费框架,被intel收编之后发布了最新的2.1版本,最近正在学习.af的所谓程序结构,就是AF网页的架构, ...

  2. 页面 JavaScript 存在多个同名方法的调用分析

    在 JavaScript 中,不存在方法重载的概念,方法重载指的是可以定义不同类型的参数和参数个数的同名方法,然后可以按需调用. 如需实现按参数个数的不同去执行不同的方法主体,正确的做法是通过定义一个 ...

  3. 禁止页面内按F5键进行刷新(扩展知识:禁止复制信息内容)

    禁止页面内按F5键进行刷新: //禁止页面内按F5键进行刷新 function f_DisableF5Refresh(event) { var e = event || window.event; v ...

  4. Dos命令大全(1)

    MS DOS 命令大全 一.基础命令 1 dir 无参数:查看当前所在目录的文件和文件夹. /s:查看当前目录已经其所有子目录的文件和文件夹. /a:查看包括隐含文件的所有文件. /ah:只显示出隐含 ...

  5. 破解IT运维成本困境,专业化分工是妙方

    随着IT建设的不断深入和发展,IT运维成为了企业运营的必需品.许多企业的IT预算相比于去年虽然有了很大的提高,但总体来说还是非常紧张.上周,我参加了一个CIO沙龙研讨会,现场调查问到目前CIO在IT运 ...

  6. Spring学习总结五——SpringIOC容器五

    一:spring组件扫描 可以使用注解的方式,代替在xml配置文件配置bean,可以减少配置文件的书写,只需要在spring容器配置 文件中配置<context:component-scan b ...

  7. kendo-ui的MVVM模式

    摘要: MVVM(Model View ViewModel)是一种帮助开发者将数据从模型分离的设计模式.MVVM的ViewModel负责将数据对象从模型中分离出来,通过这种方式数据就很容易控制数据如何 ...

  8. spring定时任务详解(@Scheduled注解)多线程讲解

    (一)在xml里加入task的命名空间 <?xml version="1.0" encoding="UTF-8"?> <beans xmlns ...

  9. 使用Ajax long polling实现简单的聊天程序

    关于web实时通信,通常使用长轮询或这长连接方式进行实现. 为了能够实际体会长轮询,通过Ajax长轮询实现了一个简单的聊天程序,在此作为笔记. 长轮询 传统的轮询方式是,客户端定时(一般使用setIn ...

  10. jQuery Colorbox弹窗插件使用教程小结、属性设置详解以及colorbox关闭

    jQuery Colorbox是一款弹出层,内容播放插件,效果极佳,当然我主要是用来弹出图片啦. jQuery Colorbox不仅有弹性动画效果,淡入淡出效果,幻灯片播放,宽度自定义,还能够ajax ...