Description

Tom不喜欢那种一字长龙式的大书架,他只想要一个小书柜来存放他的系列工具书。Tom打算把书柜放在桌子的后面,这样需要查书的时候就可以不用起身离开了。显然,这种书柜不能太大,Tom希望它的体积越小越好。另外,出于他的审美要求,他只想要一个三层的书柜。为了物尽其用,Tom规定每层必须至少放一本书。现在的问题是,Tom怎么分配他的工具书,才能让木匠造出最小的书柜来呢? Tom很快意识到这是一个数学问题。每本书都有自己的高度hi和厚度ti。我们需要求的是一个分配方案,也就是要求把所有的书分配在S1、S2和S3三个非空集合里面的一个,不重复也不遗漏,那么,很明显,书柜正面表面积(S)的计算公式就是:  由于书柜的深度是固定的(显然,它应该等于那本最宽的书的长度),所以要求书柜的体积最小就是要求S最小。Tom离答案只有一步之遥了。不过很遗憾,Tom并不擅长于编程,于是他邀请你来帮助他解决这个问题。

Input

文件的第一行只有一个整数n(3≤n≤70),代表书本的本数。接下来有n行,每行有两个整数hi和ti,代表每本书的高度和厚度,我们保证150≤hi≤300,5≤ti≤30。

Output

只有一行,即输出最小的S。

Sample Input

4
220 29
195 20
200 9
180 30

Sample Output

18000
/*
这道题需要表示的状态特别多,所以不能直接写。
一个很巧妙的方法是将高度从大到小排序,那么每个集合的第一个元素的h就是最大h。
即使这样2100^3的复杂度也是不够的,我们可以考虑省去第三维(可以用总的减去前两维),然后转移时f表示最大高度之和就行了。
*/
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#define N 80
#define M 2500
#define inf 1000000000
using namespace std;
int f[][M][M],n,m,sum[N];
struct node{
int h,t;
};node a[N];
bool cmp(const node&s1,const node&s2){
return s1.h>s2.h;
}
int main(){
scanf("%d",&n);
for(int i=;i<=n;i++)
scanf("%d%d",&a[i].h,&a[i].t);
sort(a+,a+n+,cmp);
for(int i=;i<=n;i++){
sum[i]=sum[i-]+a[i].t;
m+=a[i].t;
}
memset(f,,sizeof(f));
int sta=;f[][][]=;
for(int i=;i<=n;i++){
sta^=;memset(f[sta],,sizeof(f[sta]));
for(int j=sum[i-];j>=;j--)
for(int k=sum[i-];k>=;k--){
int h=a[i].h,t=a[i].t;
if(j+k>sum[i-])continue;
if(f[sta^][j][k]>)continue;
if(!j) f[sta][t][k]=min(f[sta][t][k],f[sta^][j][k]+h);
else f[sta][j+t][k]=min(f[sta][j+t][k],f[sta^][j][k]);
if(!k) f[sta][j][t]=min(f[sta][j][t],f[sta^][j][k]+h);
else f[sta][j][k+t]=min(f[sta][j][k+t],f[sta^][j][k]);
if(sum[i-]==j+k) f[sta][j][k]=min(f[sta][j][k],f[sta^][j][k]+h);
else f[sta][j][k]=min(f[sta][j][k],f[sta^][j][k]);
}
}
int ans=inf;
for(int j=;j<=m;j++)
for(int k=;j+k<m;k++){
if(f[n&][j][k]>)continue;
ans=min(ans,max(max(j,k),m-j-k)*f[n&][j][k]);
}
printf("%d",ans);
return ;
}

书柜的尺寸(bzoj 1933)的更多相关文章

  1. BZOJ1933: [Shoi2007]Bookcase 书柜的尺寸

    传送门 很容易看出来这是一道DP题,那么怎么设置状态就成了这道题的关键.本题有点特殊的地方是有两个维度的状态,而每个维度又有三个部分的参数,如果全部设置出来的话肯定会MLE.首先对书的厚度状态简化. ...

  2. BZOJ 1933 [Shoi2007]Bookcase 书柜的尺寸 ——动态规划

    状态设计的方法很巧妙,六个值 h1,h2,h3,t1,t2,t3,我们发现t1,t2,t3可以通过前缀和优化掉一维. 然后考虑把h留下还是t留下,如果留下h显然t是会发生改变的,一个int存不下. 如 ...

  3. BZOJ 1933 [Shoi2007]Bookcase 书柜的尺寸

    神奇的dp优化. 考虑6维状态的dp,分别表示三行高和宽,显然MLE&&TLE. 把高排个序,从大到小往架上放,那么若不是重开一行便对高度没有影响. 然后求出宽度的sum,dp[i][ ...

  4. [Shoi2007]Bookcase 书柜的尺寸 dp

    这道dp算是同类型dp中比较难的了,主要难点在于设置状态上: 如果像平时那样设置,必定爆空间没商量: 下面是一种思路: 先把输入进来的数据按h从大到小排序,这样就可以大大减少状态数, 然后设f[i][ ...

  5. [SHOI2007] 书柜的尺寸 思维题+Dp+空间优化

    Online Judge:Luogu-P2160 Label:思维题,Dp,空间优化 题面: 题目描述 给\(N\)本书,每本书有高度\(Hi\),厚度\(Ti\).要摆在一个三层的书架上. 书架的宽 ...

  6. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  7. 土地购买 usaco 斜率优化

    看这道题的时候,感觉很难,因为数据范围比较大,很难dp: 后来想到了[书柜的尺寸]这道题,也是一道dp,曾经看了那道题的题解而深有启发: 这道题每组的付费只与这一组长宽的最大值有关,也就是说要分组,一 ...

  8. [题解]bzoj 1861 Book 书架 - Splay

    1861: [Zjoi2006]Book 书架 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 1396  Solved: 803[Submit][Stat ...

  9. 【刷题】BZOJ 3140 [Hnoi2013]消毒

    Description 最近在生物实验室工作的小T遇到了大麻烦. 由于实验室最近升级的缘故,他的分格实验皿是一个长方体,其尺寸为abc,a.b.c 均为正整数.为了实验的方便,它被划分为abc个单位立 ...

随机推荐

  1. Python 【第十章】 Django路由

    路由可以简单理解就是 URL -> 函数名 例如: /login1/ -> 函数名 urls.py文件中 urlpatterns = [ # url(r'^admin/', admin.s ...

  2. JQuery------分页插件下载地址

    转载GitHub: https://github.com/pgkk/kkpager

  3. java ---- 面试题

    1.java 语言如何进行异常处理,关键字:throws.throw.try.catch.finally分别代表什么意义?finally代码是在return之后还是之前执行? throws是获取异常, ...

  4. 截取UTF-8编码的汉字,最后一个字出现乱码的问题

    问题描述 原来字串内容name为下面内容: ######name=杨乃文做DJ,微信公众号FunRadio.什么样的姿态是小丑姿态?2016046###### 需要截取成大小为64的name_rm[6 ...

  5. react+react-router+webpack+express+nodejs

    react+react-router+webpack+express+nodejs   做SinglePageApplication 支持热加载+ES6 有开发模式和发布模式 https://gith ...

  6. iOS 浅谈:深.浅拷贝与copy.strong

    深.浅拷贝 copy mutableCopy NSString NSString *string = @"汉斯哈哈哈"; // 没有产生新对象 NSString *copyStri ...

  7. Boost正则表达式的编译与使用方法集

    下载boost 在boost官网上下载任何版本都可以www.boost.org . 将boost压缩包解压到D盘目录下 (我下载的是boost_1_54_0.zip),目录为D:\boost_1_54 ...

  8. 如何改变span元素的宽度与高度

    内联元素:也称为行内元素,当多个行内元素连续排列时,他们会显示在一行里面. 内联元素的特性:本身是无法设置宽度和高度属性的,但是可以通过CSS样式来控制,达到我们想要的宽度和高度. span举例1: ...

  9. PHP代码 如何网页获取用户的openid

    public function getOpenid($appid, $appsecret) { $SERVER_NAME = $_SERVER['SERVER_NAME']; $REQUEST_URI ...

  10. Jquery制作--美化下拉框

    平常我们用的原生select下拉框,大部分样式没办法修改,导致在不同的浏览器里面会跟设计图的风格大相径庭.所以为了能让它美化起来,就用JQ模拟了一个下拉框,可以随意定义样式.原生的下拉框也保留在div ...