BZOJ1012最大数 [JSOI2008] 单调栈+二分
正解:单调栈+二分查找(or,线段树?
解题报告:
今天尝试学习了下单调栈,然后就看到有个博客安利了这个经典例题?于是就去做了,感觉还是帮助了理解趴quqqqqq
这题,首先,一个很显然的点是,我们要维护一个单调递减的栈
这样想,如果有一个数,有另一个数比它大还在它右边,那显然它的存在是没有意义的(就像,比你强还比你小的oier,你是注定打不过的)
那如果我们读入了一个数,它左边有比它小的数.这些数就都没有存在的意义了嘛,我们就一一弹掉
你没有发现!这个的过程!就!很栈嘛!
好滴那按照我目前的理解来说这个就是,单调栈,,,趴?
然后就做完了
唯一要注意的就,询问的时候我们肯定是根据位置来找的嘛,然后我,很傻不拉几的,一个个找,,,这就丧失了查找的意义啊!!!丧失了单调的意义啊!!!那那那那我们就没有充分利用,单调这个东西!
所以我们应该,二分查找
好了结束
(哦对了其实因为单调性我们在弹的时候也可以二分查找,但是不知为何我改进了一下之后WA了,,,然后我又懒得再研究哪儿错了而且它还不能下数据,,,然后我就懒得再进一步搞了,就这样趴quqqqqq
那就直接放代码
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define rp(i,x,y) for(register ll i=x;i<=y;++i)
#define my(i,x,y) for(register ll i=x;i>=y;--i)
ll m,d,top=,z[],wz[],t,cnt;
inline ll read()
{
;;
'))ch=getchar();
;
)+(x<<)+(ch^'),ch=getchar();
return y?x:-x;
}
int main()
{
m=read();d=read();
rp(i,,m)
{
char ch=getchar();while(ch!='Q' && ch!='A')ch=getchar();
;t=lower_bound(wz+,wz+top+,l)-wz;printf("%lld\n",z[t]);t=z[t];}
&& z[top]<n)top--;z[++top]=n;wz[top]=++cnt;}
}
;
}
好滴!完美滴结束!
BZOJ1012最大数 [JSOI2008] 单调栈+二分的更多相关文章
- bzoj1012最大数maxnumber——单调栈
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1012 单调栈水题:用了一下lower_bound二分. 代码如下: #include< ...
- BZOJ1012: [JSOI2008]最大数maxnumber [线段树 | 单调栈+二分]
1012: [JSOI2008]最大数maxnumber Time Limit: 3 Sec Memory Limit: 162 MBSubmit: 8748 Solved: 3835[Submi ...
- bzoj 4709 [Jsoi2011]柠檬——单调栈二分处理决策单调性
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4709 题解:https://blog.csdn.net/neither_nor/articl ...
- 51NOD 1962 区间计数 单调栈+二分 / 线段树+扫描线
区间计数 基准时间限制:1.5 秒 空间限制:262144 KB 分值: 80 两个数列 {An} , {Bn} ,请求出Ans, Ans定义如下: Ans:=Σni=1Σnj=i[max{ ...
- 【bzoj4237】稻草人 分治+单调栈+二分
题目描述 JOI村有一片荒地,上面竖着N个稻草人,村民们每年多次在稻草人们的周围举行祭典. 有一次,JOI村的村长听到了稻草人们的启示,计划在荒地中开垦一片田地.和启示中的一样,田地需要满足以下条件: ...
- 洛谷P1823 [COI2007] Patrik 音乐会的等待(单调栈+二分查找)
洛谷P1823 [COI2007] Patrik 音乐会的等待(单调栈+二分查找) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1333275 这个题不是很 ...
- P1198 [JSOI2008]最大数(单调栈)
P1198 [JSOI2008]最大数 题目描述 现在请求你维护一个数列,要求提供以下两种操作: 1. 查询操作. 语法:Q L 功能:查询当前数列中末尾L个数中的最大的数,并输出这个数的值. 限制: ...
- 【洛谷P1823】音乐会的等待 单调栈+二分
题目大意:给定一个长度为 N 的序列,定义两个数 \(a[i],a[j]\) 相互看得见,意味着 \(\forall k\in [i+1,j-1],a[k]\le a[i],a[k]\le a[j]\ ...
- spoj MINSUB 单调栈+二分
题目链接:点击传送 MINSUB - Largest Submatrix no tags You are given an matrix M (consisting of nonnegative i ...
随机推荐
- Webgoat学习笔记
Webgoat 分为简单版和开发版,具体版本及安装方法详见:https://github.com/WebGoat/WebGoat 本机环境为:Windows+Tomcat,故下载war包,自动解压缩进 ...
- Linux下安装配置MySQL
一.删除原来的MySQL 在安装前要先确定系统是否已经安装了其他版本的MySQL,如已安装其他版本的MySQL,需先删除后再安装新版本. 1. 执行yum命令,删除MySQL的lib库,服务文件 yu ...
- 说说UART(转)
串口协议基础 1 串口概述 串口由收发器组成.发送器是通过TxD引脚发送串行数据,接收器是通过RxD引脚接收串行数据.发送器和接收器都利用了一个移位寄存器,这个移位寄存器可以将数据进行“并转串”和“串 ...
- iOS 事件的产生、传递、响应
一.事件的产生和传递 1.1.事件的产生 发生触摸事件后,系统会将该事件加入到一个由UIApplication管理的事件队列中为什么是队列而不是栈?因为队列的特定是先进先出,先产生的事件先处理才符合常 ...
- 某MDU产品OMCI软件升级加速方案
说明 本文基于某GPON MDU产品的当前情况,提出OMCI升级的加速方案. 因时间仓促和水平限制,文中难免存在错漏和不足之处,敬请指正. 一 问题提出 根据G.988标准相关描述,软件升级过程可分 ...
- 设计模式初探-桥接(Bridge)模式
桥接(Bridge)模式,又称Handle/Body模式,属于对象结构型模式.用于将抽象部分与它的实现部分分离,使它们都可以独立地变化.比如常见的电脑窗口界面,不同的操作系统其窗口界面绘制的原理肯定不 ...
- SharpGL学习笔记(八) 矩阵堆栈和变换的综合例子: 机器人
我们先引入关于"矩阵堆栈"的官方说法: OpenGL的矩阵堆栈指的就是内存中专门用来存放矩阵数据的某块特殊区域.实际上,在创建.装入.相乘模型变换和投影变换矩阵时,都已用到堆栈操作 ...
- Elasticsearch学习之深入搜索二 --- 搜索底层原理剖析
1. 普通match如何转换为term+should { "match": { "title": "java elasticsearch"} ...
- Android 简单计算器实现源码
1.string.xml代码 <?xml version="1.0" encoding="utf-8"?> <resources> &l ...
- SharePoint 2013 字段属性之JSLink
在SharePoint 2013中,SPField新增加了一个属性是JSLink,使用客户端脚本修改字段前台展示,我们可以用很多方法修改这个脚本的引用,然后来修改脚本,下面,我们举一个简单的例子. 具 ...