参数初始化参

数的初始化其实就是对参数赋值。而我们需要学习的参数其实都是Variable,它其实是对Tensor的封装,同时提供了data,grad等借口,这就意味着我们可以直接对这些参数进行操作赋值了。这就是PyTorch简洁高效所在。所以我们可以进行如下操作进行初始化,当然其实有其他的方法,但是这种方法是PyTorch作者所推崇的:

def weight_init(m):
# 使用isinstance来判断m属于什么类型
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
# m中的weight,bias其实都是Variable,为了能学习参数以及后向传播
m.weight.data.fill_(1)
m.bias.data.zero_()

Finetune

往往在加载了预训练模型的参数之后,我们需要finetune模型,可以使用不同的方式finetune。
局部微调:有时候我们加载了训练模型后,只想调节最后的几层,其他层不训练。其实不训练也就意味着不进行梯度计算,PyTorch中提供的requires_grad使得对训练的控制变得非常简单。

model = torchvision.models.resnet18(pretrained=True)
for param in model.parameters():
    param.requires_grad = False
# 替换最后的全连接层, 改为训练100类
# 新构造的模块的参数默认requires_grad为True
model.fc = nn.Linear(512, 100)

# 只优化最后的分类层
optimizer = optim.SGD(model.fc.parameters(), lr=1e-2, momentum=0.9)

全局微调:有时候我们需要对全局都进行finetune,只不过我们希望改换过的层和其他层的学习速率不一样,这时候我们可以把其他层和新层在optimizer中单独赋予不同的学习速率。比如:

ignored_params = list(map(id, model.fc.parameters()))
base_params = filter(lambda p: id(p) not in ignored_params,
                     model.parameters())

optimizer = torch.optim.SGD([
            {'params': base_params},
            {'params': model.fc.parameters(), 'lr': 1e-3}
            ], lr=1e-2, momentum=0.9)
其中base_params使用1e-3来训练,model.fc.parameters使用1e-2来训练,momentum是二者共有的。

加载部分预训练模型:其实大多数时候我们需要根据我们的任务调节我们的模型,所以很难保证模型和公开的模型完全一样,但是预训练模型的参数确实有助于提高训练的准确率,为了结合二者的优点,就需要我们加载部分预训练模型。

pretrained_dict = model_zoo.load_url(model_urls['resnet152']) 
model_dict = model.state_dict() # 将pretrained_dict里不属于model_dict的键剔除掉
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
# 更新现有的model_dict
model_dict.update(pretrained_dict)
# 加载我们真正需要的state_dict
model.load_state_dict(model_dict)

如果模型的key值和在大数据集上训练时的key值是一样的

我们可以通过下列算法进行读取模型

model_dict = model.state_dict()

pretrained_dict = torch.load(model_path)
 # 1. filter out unnecessary keys
    diff = {k: v for k, v in model_dict.items() if \
            k in pretrained_dict and pretrained_dict[k].size() == v.size()}
    pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict and model_dict[k].size() == v.size()}
    pretrained_dict.update(diff)
    # 2. overwrite entries in the existing state dict
    model_dict.update(pretrained_dict)
    # 3. load the new state dict
    model.load_state_dict(model_dict)

如果模型的key值和在大数据集上训练时的key值是不一样的,但是顺序是一样的

model_dict = model.state_dict()

pretrained_dict = torch.load(model_path)
    keys = []
    for k,v in pretrained_dict.items():
        keys.append(k)
    i = 0
    for k,v in model_dict.items():
        if v.size() == pretrained_dict[keys[i]].size():
            print(k, ',', keys[i])
            model_dict[k]=pretrained_dict[keys[i]]
        i = i + 1
    model.load_state_dict(model_dict)

如果模型的key值和在大数据集上训练时的key值是不一样的,但是顺序是也不一样的

自己找对应关系,一个key对应一个key的赋值

PyTorch保存模型与加载模型+Finetune预训练模型使用的更多相关文章

  1. [Pytorch]Pytorch 保存模型与加载模型(转)

    转自:知乎 目录: 保存模型与加载模型 冻结一部分参数,训练另一部分参数 采用不同的学习率进行训练 1.保存模型与加载 简单的保存与加载方法: # 保存整个网络 torch.save(net, PAT ...

  2. 【4】TensorFlow光速入门-保存模型及加载模型并使用

    本文地址:https://www.cnblogs.com/tujia/p/13862360.html 系列文章: [0]TensorFlow光速入门-序 [1]TensorFlow光速入门-tenso ...

  3. 如何使用 opencv 加载 darknet yolo 预训练模型?

    如何使用 opencv 加载 darknet yolo 预训练模型? opencv 版本 > 3.4 以上 constexpr const char *image_path = "da ...

  4. 莫烦python教程学习笔记——保存模型、加载模型的两种方法

    # View more python tutorials on my Youtube and Youku channel!!! # Youtube video tutorial: https://ww ...

  5. 深度学习原理与框架-猫狗图像识别-卷积神经网络(代码) 1.cv2.resize(图片压缩) 2..get_shape()[1:4].num_elements(获得最后三维度之和) 3.saver.save(训练参数的保存) 4.tf.train.import_meta_graph(加载模型结构) 5.saver.restore(训练参数载入)

    1.cv2.resize(image, (image_size, image_size), 0, 0, cv2.INTER_LINEAR) 参数说明:image表示输入图片,image_size表示变 ...

  6. keras模型的保存与重新加载

    # 模型保存JSON文件 model_json = model.to_json() with open('model.json', 'w') as file: file.write(model_jso ...

  7. TensorFlow保存、加载模型参数 | 原理描述及踩坑经验总结

    写在前面 我之前使用的LSTM计算单元是根据其前向传播的计算公式手动实现的,这两天想要和TensorFlow自带的tf.nn.rnn_cell.BasicLSTMCell()比较一下,看看哪个训练速度 ...

  8. MindSpore保存与加载模型

    技术背景 近几年在机器学习和传统搜索算法的结合中,逐渐发展出了一种Search To Optimization的思维,旨在通过构造一个特定的机器学习模型,来替代传统算法中的搜索过程,进而加速经典图论等 ...

  9. NeHe OpenGL教程 第三十一课:加载模型

    转自[翻译]NeHe OpenGL 教程 前言 声明,此 NeHe OpenGL教程系列文章由51博客yarin翻译(2010-08-19),本博客为转载并稍加整理与修改.对NeHe的OpenGL管线 ...

随机推荐

  1. 表达式括号匹配(stack.cpp)

    [问题描述]        假设一个表达式有英文字母(小写).运算符(+,—,*,/)和左右小(圆)括号构成,以“@”作为表达式的结束符.请编写一个程序检查表达式中的左右圆括号是否匹配,若匹配,则返回 ...

  2. git指南目录

    git指南目录 发表回复 蓝色表示未阅读,棕色表示阅读过,绿色表示阅读过但不太理解 1. 起步 1.1 关于版本控制 1.2 Git 简史 1.3 Git 基础 1.4 安装 Git 1.5 初次运行 ...

  3. CentOS 7 yum 安装mysql5.6

    到mysql社区安装当前可用包 Centos  7  命令 # rpm -Uvh http://dev.mysql.com/get/mysql-community-release-el7-5.noar ...

  4. 【转载】EmptyWorkingSet 程序运行内存整清理

    网络上找了很多关于内存整理的文章,不外乎都是使用EmptyWorkingSet来实现.就如下面这段代码. #include "stdafx.h"#include <windo ...

  5. HNA CloudOS | 容器云服务专家

    HNA CloudOS | 容器云服务专家 http://cloudos.hnaresearch.com  

  6. Memory access Tracing/Profiling

    https://mahmoudhatem.wordpress.com/2017/03/22/workaround-for-linux-perf-probes-issue-for-oracle-trac ...

  7. 魔兽私服TrinityCore 运行调试流程

    配置参见上一篇:TrinityCore 魔兽世界私服11159 完整配置 (1)启动Web服务器 打开TC2_Web_Mysql目录,运行“启动Web服务器.exe” 自动弹出帐号注册界面,并启动Ap ...

  8. 内存映射函数remap_pfn_range学习——示例分析(2)

    li {list-style-type:decimal;}ol.wiz-list-level2 > li {list-style-type:lower-latin;}ol.wiz-list-le ...

  9. 报错:此版本的SQL Server Data Tools与此计算机中安装的数据库运行时组件不兼容

    在Visual Studio 2012中使用Entity Framework,根据模型生成数据库时,报如下错误: 无法在自定义编辑器中打开Transact-SQL文件此版本的SQL Server Da ...

  10. Android Service总结04 之被绑定的服务 -- Bound Service

    Android Service总结04 之被绑定的服务 -- Bound Service 版本 版本说明 发布时间 发布人 V1.0 添加了Service的介绍和示例 2013-03-17 Skywa ...