Description

给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根、内部结点和叶子均可)着以黑色或白色。你的着色方案应该保证根结点到每个叶子的简单路径上都至少包含一个有色结点(哪怕是这个叶子本身)。 对于每个叶结点u,定义c[u]为从根结点从U的简单路径上最后一个有色结点的颜色。给出每个c[u]的值,设计着色方案,使得着色结点的个数尽量少。

Input

第一行包含两个正整数m, n,其中n是叶子的个数,m是结点总数。结点编号为1,2,…,m,其中编号1,2,… ,n是叶子。以下n行每行一个0或1的整数(0表示黑色,1表示白色),依次为c[1],c[2],…,c[n]。以下m-1行每行两个整数a,b(1<=a < b <= m),表示结点a和b 有边相连。

Output

仅一个数,即着色结点数的最小值。

Sample Input

5 3
0
1
0
1 4
2 5
4 5
3 5

Sample Output

2

HINT

M<=10000

N<=5021

Solution

这题只要知道结论就很好做了

然而是神仙结论:选择任何一个点为根对答案没有任何影响(不会证)

所以直接随便选个点当根然后树形dp就可以了

$f[u][0]$和$f[u][1]$表示$u$的子树中,最后一个点想要得到一个白色/黑色的祖先,的最小代价

#include <bits/stdc++.h>

using namespace std ;

#define N 100010
#define inf 0x3f3f3f3f int n , m ;
int c[ N ] ;
int f[ N ][ ] ;
int head[ N ] , cnt ;
int fa[ N ] ;
struct node {
int to , nxt ;
} e[ N ] ; void ins( int u , int v ) {
e[ ++ cnt ].to = v ;
e[ cnt ].nxt = head[ u ] ;
head[ u ] = cnt ;
} void dfs( int u ) {
if( u <= n ) {
f[ u ][ c[ u ] ] = ;
f[ u ][ c[ u ] ^ ] = inf ;
}
for( int i = head[ u ] ; i ; i = e[ i ].nxt ) {
if( e[ i ].to == fa[ u ] ) continue ;
fa[ e[ i ].to ] = u ;
dfs( e[ i ].to ) ;
f[ u ][ ] += min( f[ e[ i ].to ][ ] , f[ e[ i ].to ][ ] + ) ;
f[ u ][ ] += min( f[ e[ i ].to ][ ] + , f[ e[ i ].to ][ ] ) ;
}
} int main() {
scanf( "%d%d" , &m , &n ) ;
for( int i = ; i <= n ; i ++ ) {
scanf( "%d" , &c[ i ] ) ;
}
for( int i = , a , b ; i < m ; i ++ ) {
scanf( "%d%d" , &a , &b ) ;
ins( a , b ) ; ins( b , a ) ;
}
dfs( m ) ;
printf( "%d\n" , min( f[ m ][ ] , f[ m ][ ] ) + ) ;
return ;
}

BZOJ1304: [CQOI2009]叶子的染色 树形dp的更多相关文章

  1. 【bzoj1304】[CQOI2009]叶子的染色 树形dp

    题目描述 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白色.你的着色方案应该保证根结点到每个叶子的简单路径上都至少包含一个有色结点( ...

  2. BZOJ 1304: [CQOI2009]叶子的染色 树形DP + 结论

    Code: #include<bits/stdc++.h> #define setIO(s) freopen(s".in","r",stdin) # ...

  3. BZOJ1304 CQOI2009 叶子的染色 【树形DP】

    BZOJ1304 CQOI2009 叶子的染色 Description 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白色.你的着色方 ...

  4. 【树形dp】bzoj1304: [CQOI2009]叶子的染色

    又是一道优美的dp Description 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白色.你的着色方案应该保证根结点到每个叶子的 ...

  5. BZOJ1304: [CQOI2009]叶子的染色

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1304 树形dp. 可以发现其实根选在哪里都是没有问题的. f[u][0],f[u][1],f[ ...

  6. BZOJ1304 CQOI2009叶子的染色(树形dp)

    令f[i]表示i子树内最少染色次数,加上012状态分别表示该子树内叶节点已均被满足.存在黑色叶节点未被满足.存在白色叶节点未被满足,考虑i节点涂色情况即可转移.事实上贪心也可以. #include&l ...

  7. BZOJ_1304_[CQOI2009]叶子的染色_树形DP

    BZOJ_1304_[CQOI2009]叶子的染色_树形DP Description 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白 ...

  8. 【BZOJ1304】[CQOI2009]叶子的染色(动态规划)

    [BZOJ1304][CQOI2009]叶子的染色(动态规划) 题面 BZOJ 洛谷 题解 很简单. 设\(f[i][0/1/2]\)表示以\(i\)为根的子树中,还有颜色为\(0/1/2\)(\(2 ...

  9. BZOJ 1304: [CQOI2009]叶子的染色

    1304: [CQOI2009]叶子的染色 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 566  Solved: 358[Submit][Statu ...

随机推荐

  1. qt——for循环里创建widget

    在for循环里创建 widget,比如test类 不能使用 test t; 而要使用 test t = new test(): for (i=0;i<=3;i++) { QPushButton* ...

  2. 2017php经典面试题

    1.PHP语言的一大优势是跨平台,什么是跨平台?一.PHP基础: PHP的运行环境最优搭配为Apache+MySQL+PHP,此运行环境可以在不同操作系统(例如windows.Linux等)上配置,不 ...

  3. Git warning:LF will be replaced by CRLF in readme.txt的原因与解决方案

    今天用Git bash遇到的问题,看了几个回答之后发现一个比较有价值的,给大家分享一下,其他很多的回答都有很或多或少存在一些弊端. 原回答地址在stackoverflow上,附上链接--http:// ...

  4. [LeetCode] 112. Path Sum_Easy tag: DFS

    Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up all ...

  5. How to enable TLS 1.2 on Windows Server 2008 R2

    Problem How to enable TLS 1.2 on Windows Server 2008 R2? Resolution QuoVadis recommends enabling and ...

  6. Locust性能测试3-no-web模式和csv报告保存

    前言 前面是在web页面操作,需要手动的点start启动,结束的时候也需要手工去点stop,没法自定义运行时间,这就不太方便. locust提供了命令行运行的方法,不启动web页面也能运行,这就是no ...

  7. Locust性能测试5-参数化批量注册

    前言 实现场景:所有并发虚拟用户共享同一份测试数据,并且保证虚拟用户使用的数据不重复. 例如,模拟10用户并发注册账号,总共有100个手机号,要求注册账号不重复,注册完毕后结束测试 准备数据 虚拟用户 ...

  8. testng入门教程11 TestNG运行JUnit测试

    现在,您已经了解了TestNG和它的各种测试,如果现在担心如何重构现有的JUnit代码,那就没有必要,使用TestNG提供了一种方法,从JUnit和TestNG按照自己的节奏.也可以使用TestNG执 ...

  9. Oracle的FIXED_DATE参数

    今天发现一个有意思的问题, 我们知道,在Oracle数据库中正常执行 select sysdate from dual 都可以返回当前主机的系统时间. 正常修改系统时间,对应的查询结果也会变成修改后的 ...

  10. HDU 4500 小Q系列故事——屌丝的逆袭(简单题)

    http://acm.hdu.edu.cn/showproblem.php?pid=4500 AC代码: #include<math.h> #include<stdio.h> ...