Description

给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根、内部结点和叶子均可)着以黑色或白色。你的着色方案应该保证根结点到每个叶子的简单路径上都至少包含一个有色结点(哪怕是这个叶子本身)。 对于每个叶结点u,定义c[u]为从根结点从U的简单路径上最后一个有色结点的颜色。给出每个c[u]的值,设计着色方案,使得着色结点的个数尽量少。

Input

第一行包含两个正整数m, n,其中n是叶子的个数,m是结点总数。结点编号为1,2,…,m,其中编号1,2,… ,n是叶子。以下n行每行一个0或1的整数(0表示黑色,1表示白色),依次为c[1],c[2],…,c[n]。以下m-1行每行两个整数a,b(1<=a < b <= m),表示结点a和b 有边相连。

Output

仅一个数,即着色结点数的最小值。

Sample Input

5 3
0
1
0
1 4
2 5
4 5
3 5

Sample Output

2

HINT

M<=10000

N<=5021

Solution

这题只要知道结论就很好做了

然而是神仙结论:选择任何一个点为根对答案没有任何影响(不会证)

所以直接随便选个点当根然后树形dp就可以了

$f[u][0]$和$f[u][1]$表示$u$的子树中,最后一个点想要得到一个白色/黑色的祖先,的最小代价

#include <bits/stdc++.h>

using namespace std ;

#define N 100010
#define inf 0x3f3f3f3f int n , m ;
int c[ N ] ;
int f[ N ][ ] ;
int head[ N ] , cnt ;
int fa[ N ] ;
struct node {
int to , nxt ;
} e[ N ] ; void ins( int u , int v ) {
e[ ++ cnt ].to = v ;
e[ cnt ].nxt = head[ u ] ;
head[ u ] = cnt ;
} void dfs( int u ) {
if( u <= n ) {
f[ u ][ c[ u ] ] = ;
f[ u ][ c[ u ] ^ ] = inf ;
}
for( int i = head[ u ] ; i ; i = e[ i ].nxt ) {
if( e[ i ].to == fa[ u ] ) continue ;
fa[ e[ i ].to ] = u ;
dfs( e[ i ].to ) ;
f[ u ][ ] += min( f[ e[ i ].to ][ ] , f[ e[ i ].to ][ ] + ) ;
f[ u ][ ] += min( f[ e[ i ].to ][ ] + , f[ e[ i ].to ][ ] ) ;
}
} int main() {
scanf( "%d%d" , &m , &n ) ;
for( int i = ; i <= n ; i ++ ) {
scanf( "%d" , &c[ i ] ) ;
}
for( int i = , a , b ; i < m ; i ++ ) {
scanf( "%d%d" , &a , &b ) ;
ins( a , b ) ; ins( b , a ) ;
}
dfs( m ) ;
printf( "%d\n" , min( f[ m ][ ] , f[ m ][ ] ) + ) ;
return ;
}

BZOJ1304: [CQOI2009]叶子的染色 树形dp的更多相关文章

  1. 【bzoj1304】[CQOI2009]叶子的染色 树形dp

    题目描述 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白色.你的着色方案应该保证根结点到每个叶子的简单路径上都至少包含一个有色结点( ...

  2. BZOJ 1304: [CQOI2009]叶子的染色 树形DP + 结论

    Code: #include<bits/stdc++.h> #define setIO(s) freopen(s".in","r",stdin) # ...

  3. BZOJ1304 CQOI2009 叶子的染色 【树形DP】

    BZOJ1304 CQOI2009 叶子的染色 Description 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白色.你的着色方 ...

  4. 【树形dp】bzoj1304: [CQOI2009]叶子的染色

    又是一道优美的dp Description 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白色.你的着色方案应该保证根结点到每个叶子的 ...

  5. BZOJ1304: [CQOI2009]叶子的染色

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1304 树形dp. 可以发现其实根选在哪里都是没有问题的. f[u][0],f[u][1],f[ ...

  6. BZOJ1304 CQOI2009叶子的染色(树形dp)

    令f[i]表示i子树内最少染色次数,加上012状态分别表示该子树内叶节点已均被满足.存在黑色叶节点未被满足.存在白色叶节点未被满足,考虑i节点涂色情况即可转移.事实上贪心也可以. #include&l ...

  7. BZOJ_1304_[CQOI2009]叶子的染色_树形DP

    BZOJ_1304_[CQOI2009]叶子的染色_树形DP Description 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白 ...

  8. 【BZOJ1304】[CQOI2009]叶子的染色(动态规划)

    [BZOJ1304][CQOI2009]叶子的染色(动态规划) 题面 BZOJ 洛谷 题解 很简单. 设\(f[i][0/1/2]\)表示以\(i\)为根的子树中,还有颜色为\(0/1/2\)(\(2 ...

  9. BZOJ 1304: [CQOI2009]叶子的染色

    1304: [CQOI2009]叶子的染色 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 566  Solved: 358[Submit][Statu ...

随机推荐

  1. flask中的信号量

    一.在flask中自定义信号 from flask import Flask, current_app, flash, render_template from flask.signals impor ...

  2. Linux(CentOS)安装Mysql数据库

    1.需要mysql-linux安装包 本次使用mysql-5.7.17-linux-glibc2.5-x86_64.tar.gz进行安装   2.将此安装包上传至linux服务器 上传路径为:/usr ...

  3. mathType插入公式编号,及对公式编号的字体进行修改。调整公式上下间距。

    一:插入 公式编号. 1:首先设置公式格式.点击 mathtype>insert number >format 2:有简单格式和 高级格式:              https://we ...

  4. (转)Linux Oracle服务启动&停止脚本与开机自启动

    在CentOS 6.3下安装完Oracle 10g R2,重开机之后,你会发现Oracle没有自行启动,这是正常的,因为在Linux下安装Oracle的确不会自行启动,必须要自行设定相关参数,首先先介 ...

  5. 安卓手机上微信无法打开Https网址的完美解决方案

    1,第三方网站检测网站的SSL证书是否正确的安装 https://www.geocerts.com/ssl-checker,大概率你会看到下边的场景,一个证书链完整的警告,如果想知道我的基础配置是什么 ...

  6. [LeetCode] 437. Path Sum III_ Easy tag: DFS

    You are given a binary tree in which each node contains an integer value. Find the number of paths t ...

  7. python图片处理(一)

    python图片处理需要先在cmd里面安装Pillow pip install Pillow 一.图片的打开与显示 from PIL import Image img=Image.open('d:/d ...

  8. mysql进程文件

  9. 《Enhanced LSTM for Natural Language Inference》(自然语言推理)

    解决的问题 自然语言推理,判断a是否可以推理出b.简单讲就是判断2个句子ab是否有相同的含义. 方法 我们的自然语言推理网络由以下部分组成:输入编码(Input Encoding ),局部推理模型(L ...

  10. zw版【转发·台湾nvp系列Delphi例程】HALCON MirrorImage2

    zw版[转发·台湾nvp系列Delphi例程]HALCON MirrorImage2 procedure TForm1.Button1Click(Sender: TObject);var op: HO ...