Impala与Hive的比较
1. Impala架构

图 1
2. 与Hive的关系

图 2
3. Impala的查询处理过程

图 3
PLAN FRAGMENT 0
PARTITION: UNPARTITIONED4:EXCHANGE
tuple ids: 1PLAN FRAGMENT 1
PARTITION: HASH_PARTITIONED: <slot 1>STREAM DATA SINK
EXCHANGE ID: 4
UNPARTITIONED3:AGGREGATE
| output: SUM(<slot 2>), SUM(<slot 3>)
| group by: <slot 1>
| tuple ids: 1
|
2:EXCHANGE
tuple ids: 1PLAN FRAGMENT 2
PARTITION: RANDOMSTREAM DATA SINK
EXCHANGE ID: 2
HASH_PARTITIONED: <slot 1>1:AGGREGATE
| output: SUM(id), COUNT(id)
| group by: id
| tuple ids: 1
|
0:SCAN HDFS
table=default.customer_small #partitions=1 size=193B
tuple ids: 0

图 4
4. Impala相对于Hive所使用的优化技术
5. Impala与Hive的异同
Hive: 依赖于MapReduce执行框架,执行计划分成map->shuffle->reduce->map->shuffle->reduce…的模型。如果一个Query会被编译成多轮MapReduce,则会有更多的写中间结果。由于MapReduce执行框架本身的特点,过多的中间过程会增加整个Query的执行时间。
Impala: 把执行计划表现为一棵完整的执行计划树,可以更自然地分发执行计划到各个Impalad执行查询,而不用像Hive那样把它组合成管道型的map->reduce模式,以此保证Impala有更好的并发性和避免不必要的中间sort与shuffle。
Hive: 采用推的方式,每一个计算节点计算完成后将数据主动推给后续节点。
Impala: 采用拉的方式,后续节点通过getNext主动向前面节点要数据,以此方式数据可以流式的返回给客户端,且只要有1条数据被处理完,就可以立即展现出来,而不用等到全部处理完成,更符合SQL交互式查询使用。
Hive: 在执行过程中如果内存放不下所有数据,则会使用外存,以保证Query能顺序执行完。每一轮MapReduce结束,中间结果也会写入HDFS中,同样由于MapReduce执行架构的特性,shuffle过程也会有写本地磁盘的操作。
Impala: 在遇到内存放不下数据时,当前版本1.0.1是直接返回错误,而不会利用外存,以后版本应该会进行改进。这使用得Impala目前处理Query会受到一定的限制,最好还是与Hive配合使用。Impala在多个阶段之间利用网络传输数据,在执行过程不会有写磁盘的操作(insert除外)。
Hive: 任务调度依赖于Hadoop的调度策略。
Impala: 调度由自己完成,目前只有一种调度器simple-schedule,它会尽量满足数据的局部性,扫描数据的进程尽量靠近数据本身所在的物理机器。调度器目前还比较简单,在SimpleScheduler::GetBackend中可以看到,现在还没有考虑负载,网络IO状况等因素进行调度。但目前Impala已经有对执行过程的性能统计分析,应该以后版本会利用这些统计信息进行调度吧。
Hive: 依赖于Hadoop的容错能力。
Impala: 在查询过程中,没有容错逻辑,如果在执行过程中发生故障,则直接返回错误(这与Impala的设计有关,因为Impala定位于实时查询,一次查询失败,再查一次就好了,再查一次的成本很低)。但从整体来看,Impala是能很好的容错,所有的Impalad是对等的结构,用户可以向任何一个Impalad提交查询,如果一个Impalad失效,其上正在运行的所有Query都将失败,但用户可以重新提交查询由其它Impalad代替执行,不会影响服务。对于State Store目前只有一个,但当State Store失效,也不会影响服务,每个Impalad都缓存了State Store的信息,只是不能再更新集群状态,有可能会把执行任务分配给已经失效的Impalad执行,导致本次Query失败。
Hive: 复杂的批处理查询任务,数据转换任务。
Impala:实时数据分析,因为不支持UDF,能处理的问题域有一定的限制,与Hive配合使用,对Hive的结果数据集进行实时分析。
6. Impala的优缺点
优点:
- 支持SQL查询,快速查询大数据。
- 可以对已有数据进行查询,减少数据的加载,转换。
- 多种存储格式可以选择(Parquet, Text, Avro, RCFile, SequeenceFile)。
- 可以与Hive配合使用。
缺点:
- 不支持用户定义函数UDF。
- 不支持text域的全文搜索。
- 不支持Transforms。
- 不支持查询期的容错。
- 对内存要求高。
Impala与Hive的比较的更多相关文章
- Impala与Hive的比較
1. Impala架构 Impala是Cloudera在受到Google的Dremel启示下开发的实时交互SQL大数据查询工具,Impala没有再使用缓慢的Hive+MapReduce批 ...
- [转]impala操作hive数据实例
https://blog.csdn.net/wiborgite/article/details/78813342 背景说明: 基于CHD quick VM环境,在一个VM中同时包含了HDFS.YARN ...
- impala与hive的比较以及impala的有缺点
最近读的几篇关于impala的文章,这篇良心不错:https://www.biaodianfu.com/impala.html(本文截取部分内容) Impala是Cloudera公司主导开发的新型查询 ...
- 【转载】Impala和Hive的区别
Impala和Hive的关系 Impala是基于Hive的大数据实时分析查询引擎,直接使用Hive的元数据库Metadata,意味着impala元数据都存储在Hive的metastore中.并且im ...
- Impala和Hive的关系(详解)
Impala和Hive的关系 Impala是基于Hive的大数据实时分析查询引擎,直接使用Hive的元数据库Metadata,意味着impala元数据都存储在Hive的metastore中.并且im ...
- Impala与Hive的优缺点和异同
定位: HIVE:长时间的批处理查询分析 impala:实时交互式SQL查询 impala优缺点优点: 1. 生成执行计划树,不用多次启动job造成多余开销,并且减少中间结果数据写入磁盘,执行速度快 ...
- 求解:为什么impala实现hive查询 可以使用ifnull()函数,不可以使用length() 函数
求大神解惑,找了很久都没有找到为什么??? hive支持length() 函数,不支持ifnull()函数??? impala实现hive查询 支持ifnull()函数,不支持length() 函数 ...
- 使用impala连接hive踩坑过程
一.打包镜像出错 docker build总是出错,如果你用的是python3.7,可以考虑使用python3.6版本 并且注意:选择thrift-sasl==0.2.1,否则会出现: Attribu ...
- 使用Hive或Impala执行SQL语句,对存储在HBase中的数据操作
CSSDesk body { background-color: #2574b0; } /*! zybuluo */ article,aside,details,figcaption,figure,f ...
随机推荐
- ASP.NET 文件上传于下载
本文主要介绍一下,在APS.NET中文件的简单上传于下载,上传是将文件上传到服务器的指定目录下,下载是从存入数据库中的路径,从服务器上下载. 1.上传文件 (1)页面代码 <table alig ...
- GDI+绘制半圆按钮
新建一个用户控件: public partial class UserControl1 : UserControl { public UserControl1() { InitializeCompon ...
- 【BZOJ5133】[CodePlus2017年12月]白金元首与独舞 矩阵树定理
[BZOJ5133][CodePlus2017年12月]白金元首与独舞 题面:www.lydsy.com/JudgeOnline/upload/201712/div1.pdf 题解:由于k很小,考虑用 ...
- Gradle 教程
extends:http://www.zhihu.com/question/27866554/answer/38427122 stormzhang博客精华 有一个Gradle 的教程,足够你入门啦. ...
- Unity3D笔记 Collect
一.输入轴 默认输入轴: Horizontal 和 Vertical被映射到w, a, s, d键和方向键 Fire1, Fire2, Fire3被分别映射到Ctrl,Option(Alt)和Comm ...
- UEditor富文本WEB编辑器自定义默认值设置方法
1.在使用UEditor编辑器编写内容时你会发现,当输入的内容较多时,编辑框的边框高度也会自动增加,若希望输入内容较多时以拉框滚动的效果. 方法:找到Ueditor文件根目录下的ueditor.con ...
- Bitbucket - 用git 用法
核心流程: 从远端中心repo那里Git clone 到本地,再在本地开发(add, commit), 通常会利用branch管理,如果觉得code 没问题了,就push到远端的中心repo上.这里中 ...
- Ubuntu16.04双网卡主备配置
前几日写了一篇Ubuntu14.04双网卡主备配置,没成想变化总是这么快,今日安装某软件,提示最匹配的ubuntu版本是16.04,作为一个码农能有什么办法,只能不断去适应变化.拥抱变化. 首先16. ...
- 9.13Django ORM那些事
2018-9-13 14:23:22 ORM那些事 参考 : https://www.cnblogs.com/liwenzhou/p/8660826.html 今天的都是ORM的查询 更详细进阶了! ...
- Spring Framework框架容器核心源码逐步剖析
目录 构建Spring环境 Spring 版本 5.1.3.RELEASE 测试类 Spring 配置文件 测试方法Main 快速进入Debug查看IOC容器构建源码 Spring IOC源码步骤分析 ...