YARN产生背景

Hadoop1.x中的MapReduce构成图如下:

在Hadoop1.x中MapReduce是Master/Slave结构,在集群中的表现形式为:1个JobTracker带多个TaskTracker;

JobTracker:负责资源管理和作业调度;

TaskTracker:定期向JobTracker汇报本节点的健康状况、资源使用情况以及任务的执行情况;接收来自JobTracker的命令(启动/杀死任务等)并执行接收到的命令;

1、MapReduce1.0存在的问题

  1)单点故障:JobTracker只有一个,JobTracker挂了整个集群就没办法使用了;

  2)JobTracker负责接收来自各个JobTracker节点的RPC请求,压力会很大,限制了集群的扩展;随着节点规模增大之后,JobTracker就成为一个瓶颈;

  3)仅支持MapReduce计算框架

    MapReduce计算框架是一个基于Map和Reduce两阶段、适合批处理的、基于磁盘的计算框架;

    MapReduce计算框架优点:容错性好;

    MapReduce计算框架缺点:性能差;

2、资源利用率  

  在没有YARN之前,是一个集群一个计算框架。比如:Hadoop一个集群、Spark一个集群、HBase一个集群......

  造成各个集群管理复杂,资源的利用率很低;比如:在某个时间段内Hadoop集群忙而Spark集群闲着,反之亦然,各个集群之间不能共享资源造成集群间资源并不能充分利用;

  解决思路:

  将所有的计算框架运行在一个集群中,共享一个集群的资源,按需分配;Hadoop需要资源就将资源分配给Hadoop,Spark需要资源就将资源分配给Spark,进而整个集群中的资源利用率就高于多个小集群的资源利用率

3、运维成本

  采用“一个框架一个集群”的模式,则需要多个管理员管理这些集群,进而增加运维成本

  而共享集群模式通常需要少数管理员即可完成多个框架的统一管理;

4、数据共享

  随着数据量的暴增,跨集群间的数据移动不仅需要花费更长的时间,且硬件成本也会大大增加

  而共享集群模式可让多种框架共享数据和硬件资源,将大大减少数据移动带来的成本;

总结:

1) 源于MRv1的缺陷:扩展性受限、单点故障、难以支持MR之外的计算框架

2) 多计算框架各自为战,数据共享困难,资源利用率低

  MR: 离线计算框架

  Storm:实时计算框架

  Spark:内存计算框架

催生了YARN的产生。

YARN基本构成

Master/Slave结构,1个ResourceManager对应多个NodeManager

YARN由Client、ResourceManager、NodeManager、ApplicationMaster组成;

Client向ResourceManager提交任务、杀死任务等;

ApplicationMaster由对应的应用程序完成;每个应用程序对应一个ApplicationMaster,ApplicationMaster向ResourceManager申请资源用于在NodeManager上启动相应的Task;

NodeManager向ResourceManager通过心跳信息:汇报NodeManager健康状况、任务执行状况、领取任务等;

ResourceManager:整个集群只有一个,负责集群资源的统一管理和调度

  1)处理来自客户端的请求(启动/杀死应用程序);

  2)启动/监控ApplicationMaster;一旦某个AM挂了之后,RM将会在另外一个节点上启动该AM;

  3)监控NodeManager,接收NodeManager的心跳汇报信息并分配任务到NodeManager去执行;一旦某个NM挂了,标志下该NM上的任务,来告诉对应的AM如何处理;

  4)负责整个集群的资源分配和调度;

NodeManager:整个集群中有多个,负责单节点资源管理和使用

  1)周期性向ResourceManager汇报本节点上的资源使用情况和各个Container的运行状态;

  2)接收并处理来自ResourceManager的Container启动/停止的各种命令;

  3)处理来自ApplicationMaster的命令;

  4)负责单个节点上的资源管理和任务调度;

ApplicationMaster:每个应用一个,负责应用程序的管理

  1)数据切分;

  2)为应用程序/作业向ResourceManager申请资源(Container),并分配给内部任务;

  3)与NodeManager通信以启动/停止任务;

  4)任务监控和容错(在任务执行失败时重新为该任务申请资源以重启任务);

  5)处理ResourceManager发过来的命令:杀死Container、让NodeManager重启等;

Container

  对任务运行环境的抽象;

  1)任务运行资源(节点、内存、CPU);

  2)任务启动命令;

  3)任务运行环境;

  任务是运行在Container中,一个Container中既可以运行ApplicationMaster也可以运行具体的Map/Reduce/MPI/Spark Task;

YARN工作原理

1)用户向YARN中提交应用程序/作业,其中包括ApplicaitonMaster程序、启动ApplicationMaster的命令、用户程序等;

2)ResourceManager为作业分配第一个Container,并与对应的NodeManager通信,要求它在这个Containter中启动该作业的ApplicationMaster;

3)ApplicationMaster首先向ResourceManager注册,这样用户可以直接通过ResourceManager查询作业的运行状态;然后它将为各个任务申请资源并监控任务的运行状态,直到运行结束。即重复步骤4-7;

4)ApplicationMaster采用轮询的方式通过RPC请求向ResourceManager申请和领取资源;

5)一旦ApplicationMaster申请到资源后,便与对应的NodeManager通信,要求它启动任务;

6)NodeManager启动任务;

7)各个任务通过RPC协议向ApplicationMaster汇报自己的状态和进度,以让ApplicaitonMaster随时掌握各个任务的运行状态,从而可以在任务失败时重新启动任务;
在作业运行过程中,用户可随时通过RPC向ApplicationMaster查询作业当前运行状态;

8)作业完成后,ApplicationMaster向ResourceManager注销并关闭自己;

YARN容错性

1、ResourceMananger

  基于ZooKeeper实现HA避免单点故障;

2、NodeManager

  执行失败后,ResourceManager将失败任务告诉对应的ApplicationMaster;

  由ApplicationMaster决定如何处理失败的任务;

3、ApplicationMaster

  执行失败后,由ResourceManager负责重启;

  ApplicationMaster需处理内部任务的容错问题;

  RMAppMaster会保存已经运行完成的Task,重启后无需重新运行。

YARN调度框架

1、双层调度框架

  1)ResourceManager将资源分配给ApplicationMaster;

  2)ApplicationMaster将资源进一步分配给各个TASK;

2、基于资源预留的调度策略

  1)资源不够时,会为Task预留,直到资源充足;

  描述:当一个Task需要10G资源时,各个节点都不足10G,那么就选择一个节点,但是某个NodeManager上只有2G,那么就在这个NodeManager上预留,当这个NodeManager上释放其他资源后,会将资源预留给10G的作业,直到攒够10G时,启动Task;

  缺点:资源利用率不高,要先攒着,等到10G才利用,造成集群的资源利用率低;

  2)与“all or nothing”策略不同(Apache Mesos)

  描述:当一个作业需要10G资源时,节点都不足10G,那就慢慢等,等到某个节点上有10G空闲资源时再运行,很可能会导致该Task饿死。

YARN设计目标

通用的统一的资源管理系统:

1)同时运行长应用程序(永不停止的程序:Service、HTTP Server);

2)短应用程序(秒、分、小时级内运行结束的程序:MR job、Spark job等);

以YARN为核心的生态系统

在引入YARN之后,可以在YARN上运行各种不同框架的作业:

离线计算框架:MapReduce

DAG计算框架:Tez

流式计算框架:Storm

内存计算框架:Spark

MapReduce2.0与YARN

1、一个MapReduce应用程序需要如下模块:

  1)任务管理和资源调度;

  2)任务驱动模块(MapTask、ReduceTask);

  3)用户代码(Mapper、Reducer);

2、MapReduce2.0的组成:

  1)YARN(整个集群只有一个);

  2)MRAppMasster(一个应用程序一个);

  3)用户代码(Mapper、Reducer);

3、MapReducer1.0和MapReduce2.0的区别:

  1)MapReduce1.0是一个独立的系统,直接运行在Linux上;

  2)MapReduce2.0则是运行在YARN上的框架,且可与多种框架一起运行在YARN之上;

4、MapReduce2.0和YARN的区别:

  1)YARN是一个资源管理系统,负责资源管理和调度;

  2)MapReduce只是运行在YARN上的一个应用程序;如果把YARN看成是android,那么MapReduce就是运行在android上个一个app;

Hadoop2.0构成之YARN的更多相关文章

  1. Hadoop2.0(HDFS2)以及YARN设计的亮点

    YARN总体上仍然是Master/Slave结构,在整个资源管理框架中,ResourceManager为Master,NodeManager为Slave,ResouceManager负责对各个Node ...

  2. Hadoop2.0源码包简介

    Hadoop2.0源码包简介 1.解压源码包: 2.目录结构: hadoop-common-project:Hadoop基础库所在目录,如RPC.Metrics.Counter等.包含了其它所有模块可 ...

  3. Hadoop2.0之YARN

    YARN(Yet Another Resource Negotiator)是Hadoop2.0集群中负责资源管理和调度以及监控运行在它上面的各种应用,是hadoop2.0中的核心,它类似于一个分布式操 ...

  4. Hadoop2.0之YARN组件

    官方文档:https://hadoop.apache.org/docs/stable/,目前官方已经是3.x,但yarn机制没有太大变化 一.简介 在Hadoop1.0中,没有yarn,所有的任务调度 ...

  5. hadoop入门(3)——hadoop2.0理论基础:安装部署方法

    一.hadoop2.0安装部署流程         1.自动安装部署:Ambari.Minos(小米).Cloudera Manager(收费)         2.使用RPM包安装部署:Apache ...

  6. hadoop2.0 和1.0的区别

    1. Hadoop 1.0中的资源管理方案Hadoop 1.0指的是版本为Apache Hadoop 0.20.x.1.x或者CDH3系列的Hadoop,内核主要由HDFS和MapReduce两个系统 ...

  7. Cloudera Hadoop 5& Hadoop高阶管理及调优课程(CDH5,Hadoop2.0,HA,安全,管理,调优)

    1.课程环境 本课程涉及的技术产品及相关版本: 技术 版本 Linux CentOS 6.5 Java 1.7 Hadoop2.0 2.6.0 Hadoop1.0 1.2.1 Zookeeper 3. ...

  8. Hadoop2.0伪分布式平台环境搭建

    一.搭建环境的前提条件 环境:ubuntu-16.04 hadoop-2.6.0  jdk1.8.0_161.这里的环境不一定需要和我一样,基本版本差不多都ok的,所需安装包和压缩包自行下载即可. 因 ...

  9. Hadoop-2.0 目录简介

    Hadoop-2.0 目录简介 一.目录结构 将下载的压缩包解压: 解压后文件夹如下: 二.各文件夹目录结构 1.bin:Hadoop2.0的最基本管理脚本和使用脚本所在目录.这些脚本是sbin目录下 ...

随机推荐

  1. react-> webstrom 配置

    React Library支持

  2. UI基础:视图控制器.屏幕旋转.MVC 分类: iOS学习-UI 2015-07-02 22:21 62人阅读 评论(0) 收藏

    UIViewController 视图控制器,继承自UIResponder,作用:管理视图并且响应事件 功能: 1.分担APPdelegate的工作 2.实现模块独立,能提高复用性 创建UIViewC ...

  3. CentOS7安装OpenStack(Rocky版)-03.安装Glance镜像服务组件(控制节点)

    上篇文章分享了keystone的安装配置,本文接着分享openstack的镜像服务glance. --------------- 完美的分割线 ---------------- 3.0.glance概 ...

  4. 强化学习 平台 openAI 的 gym 安装 (Ubuntu环境下如何安装Python的gym模块)

    openAI 公司给出了一个集成较多环境的强化学习平台  gym , 本篇博客主要是讲它怎么安装. openAI公司的主页: https://www.openai.com/systems/ 从主页上我 ...

  5. what is bitcoin

  6. convert CAN frame

    前言 最近了解了一些socket can的知识点,本文主要介绍如何将数据转换为CAN报文,前提是已经确定CAN的传输协议. 本文使用的CAN报文共有22条,这些报文共用一个can id,每条报文使用序 ...

  7. 20155229 2016-2017-2 《Java程序设计》第五周学习总结

    20155229 2016-2017-2 <Java程序设计>第五周学习总结 教材学习内容总结 第八章: Java中所有错误都会被打包为对象. 设计错误对象都继承自java.lang.Th ...

  8. DOS命令下使用sqlite3 命令中文乱码的解决办法

    windows cmd窗口无法显示中文,不一定数据库中存储的就是乱码——多数情况只是显示问题,可以通过以下方式解决: 1.退出dos 或者重新开启在CMD窗口,输下:chcp 65001 然后回车确定 ...

  9. 【java编程】正确重写hashCode和equesl方案

    一. 正确书写hashCode的办法: [原则]按照equals( )中比较两个对象是否一致的条件用到的属性来重写hashCode(). {1}. 常用的办法就是利用涉及到的的属性进行线性组合. {2 ...

  10. test20181005 序列

    题意 考场30分 维护差值,考虑每次移动的变更,当前2-n位置上的差加1,1位置上的差减n-1. 然后要求的是绝对值的和,用吉司机线段树维护最大最小值.次大次小值. 期望复杂度\(O(n \log n ...