DAG 动态规划 巴比伦塔 B - The Tower of Babylon
这是一个DAG 模型,有两种常规解法
1.记忆化搜索, 写函数,去查找上一个符合的值,不断递归
2.递推法
方法一:记忆化搜索
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
using namespace std;
struct node
{
int x,y,z;
node(int x=0,int y=0,int z=0) : x(x) , y(y) , z(z){}
}exa[5000]; bool cmp(node a,node b)
{
if(a.x==b.x) return a.y>b.y;
else return a.x>b.x;
} int n;
int dp[10000];
bool vis[10000]; int d(int e)
{
if(vis[e]) return dp[e];
vis[e]=1;
int &ans=dp[e];
ans=exa[e].z;
for(int i=1;i<e;i++)
{
// printf("exa[%d].x=%d\n",i,exa[i].x);
// printf("exa[%d].y=%d\n",i,exa[i].y);
// printf("exa[%d].x=%d\n",e,exa[e].x);
// printf("exa[%d].y=%d\n",e,exa[e].y);
if(exa[i].x>exa[e].x&&exa[i].y>exa[e].y)
{
ans=max(ans,d(i)+exa[e].z);
// cout<<ans<<" "<<i<<endl;
}
}
return ans;
} int main()
{
int num=0;
while(scanf("%d",&n)==1&&n)
{
memset(dp,0,sizeof(dp));
memset(vis,0,sizeof(vis));
for(int i=1;i<=n;i++)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
exa[i]=node(a,b,c);
exa[n+i]=node(b,c,a);
exa[n*2+i]=node(b,a,c);
exa[n*3+i]=node(a,c,b);
exa[n*4+i]=node(c,a,b);
exa[n*5+i]=node(c,b,a);
}
n*=6;
sort(exa+1,exa+n+1,cmp);
int ans=0;
for(int i=1;i<=n;i++)
{
int tmp=d(i);
ans=max(ans,tmp);
}
printf("Case %d: maximum height = %d\n",++num,ans);
}
return 0;
}
方法二:递推法
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
using namespace std;
struct node
{
int x,y,z;
node(int x=,int y=,int z=) : x(x) , y(y) , z(z){}
}exa[];
bool cmp(node a,node b)
{
if(a.x==b.x) return a.y>b.y;
else return a.x>b.x;
} int n;
int dp[]; int main()
{
int num=;
while(scanf("%d",&n)==&&n)
{
memset(dp,,sizeof(dp));
for(int i=;i<=n;i++)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
exa[i]=node(a,b,c);
exa[n+i]=node(b,c,a);
exa[n*+i]=node(b,a,c);
exa[n*+i]=node(a,c,b);
exa[n*+i]=node(c,a,b);
exa[n*+i]=node(c,b,a);
}
n*=;
int ans=;
sort(exa+,exa+n+,cmp);
for(int i=;i<=n;i++)
{
dp[i]=exa[i].z;
for(int j=;j<i;j++)
{
if(exa[i].x<exa[j].x&&exa[i].y<exa[j].y)
{
dp[i]=max(dp[i],dp[j]+exa[i].z);
//cout<<dp[i]<<"ww "<<i<<endl;
}//cout<<dp[i]<<" "<<i<<endl;
}
ans=max(ans,dp[i]);
}
printf("Case %d: maximum height = ",++num);
cout<<ans<<endl;
}
return ;
}
DAG 动态规划 巴比伦塔 B - The Tower of Babylon的更多相关文章
- UVA437-The Tower of Babylon(动态规划基础)
Problem UVA437-The Tower of Babylon Accept: 3648 Submit: 12532Time Limit: 3000 mSec Problem Descrip ...
- UVa 437 The Tower of Babylon(经典动态规划)
传送门 Description Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details ...
- [动态规划]UVA437 - The Tower of Babylon
The Tower of Babylon Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many d ...
- ACM - 动态规划 - UVA437 The Tower of Babylon
UVA437 The Tower of Babylon 题解 初始时给了 \(n\) 种长方体方块,每种有无限个,对于每一个方块,我们可以选择一面作为底.然后用这些方块尽可能高地堆叠成一个塔,要求只有 ...
- UVA The Tower of Babylon
The Tower of Babylon Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many det ...
- UVa 437 The Tower of Babylon
Description Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details of ...
- uva The Tower of Babylon[LIS][dp]
转自:https://mp.weixin.qq.com/s/oZVj8lxJH6ZqL4sGCXuxMw The Tower of Babylon(巴比伦塔) Perhaps you have hea ...
- POJ 2241 The Tower of Babylon
The Tower of Babylon Time Limit: 1000ms Memory Limit: 65536KB This problem will be judged on PKU. Or ...
- Uva437 The Tower of Babylon
https://odzkskevi.qnssl.com/5e1fdf8cae5d11a8f572bae96d6095c0?v=1507521965 Perhaps you have heard of ...
随机推荐
- HTML XML 介绍
一. HTML(HyperTextMark-upLanguage)即超文本标记语言,是WWW的描述语言. 二. XML即ExtentsibleMarkup Language(可扩展标记语言), XML ...
- [转] can not find module @angular/animations/browser
本文转自:https://blog.csdn.net/yaerfeng/article/details/68956298 angularjs4升级了,原来的animations现在被单独出来一个包. ...
- maven详细配置
Eclipse上Maven环境配置使用 (全) 1. 安装配置Maven: 1.1 从Apache网站 http://maven.apache.org/ 下载并且解压缩安装Apache Maven. ...
- Matlab function lorenzgui
function lorenzgui %LORENZGUI Plot the orbit around the Lorenz chaotic attractor. % This function an ...
- Python全栈学习_day002知识点
今日大纲: . while循环 . 格式化输出 . 运算符 . 编码初识 1. while循环 - while 无限循环: while True: # 死循环 print('大悲咒') print(' ...
- canvas-color的几种设置
#ffff #642 = #664422 rgb(255,128,0) rgba(100,100,100,0.8) hsl(20,62%,28%) hsla(40,82%,33%,0.6) red
- addEventListener.js
document.addEventListener("click",function(){ console.log("添加事件监听") }) 举个例子 : 点击 ...
- git与vscode连接的一种简单方式
首先你得安装git,如果你还没安装git,推荐你一个视频git的下载与安装,这套视频包含VS code和git的基本使用,当你看完它,就可以不看我的这篇博客了. 废话不多说,直接进入正题: 首先进入g ...
- 修改 this 指向
封装函数 f,使 f 的 this 指向指定的对象 function bindThis(f, oTarget) { if(f.bind){ return f.bind(oTarget); }else{ ...
- Salesforce中的单点登录简介
单点登录的定义 引自维基百科: 单点登录(英语:Single sign-on,缩写为 SSO),又译为单一签入,一种对于许多相互关连,但是又是各自独立的软件系统,提供访问控制的属性.当拥有这项属性时, ...