题目:The Tower of Babylon

这是一个DAG 模型,有两种常规解法

1.记忆化搜索, 写函数,去查找上一个符合的值,不断递归

2.递推法

方法一:记忆化搜索
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
using namespace std;
struct node
{
int x,y,z;
node(int x=0,int y=0,int z=0) : x(x) , y(y) , z(z){}
}exa[5000]; bool cmp(node a,node b)
{
if(a.x==b.x) return a.y>b.y;
else return a.x>b.x;
} int n;
int dp[10000];
bool vis[10000]; int d(int e)
{
if(vis[e]) return dp[e];
vis[e]=1;
int &ans=dp[e];
ans=exa[e].z;
for(int i=1;i<e;i++)
{
// printf("exa[%d].x=%d\n",i,exa[i].x);
// printf("exa[%d].y=%d\n",i,exa[i].y);
// printf("exa[%d].x=%d\n",e,exa[e].x);
// printf("exa[%d].y=%d\n",e,exa[e].y);
if(exa[i].x>exa[e].x&&exa[i].y>exa[e].y)
{
ans=max(ans,d(i)+exa[e].z);
// cout<<ans<<" "<<i<<endl;
}
}
return ans;
} int main()
{
int num=0;
while(scanf("%d",&n)==1&&n)
{
memset(dp,0,sizeof(dp));
memset(vis,0,sizeof(vis));
for(int i=1;i<=n;i++)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
exa[i]=node(a,b,c);
exa[n+i]=node(b,c,a);
exa[n*2+i]=node(b,a,c);
exa[n*3+i]=node(a,c,b);
exa[n*4+i]=node(c,a,b);
exa[n*5+i]=node(c,b,a);
}
n*=6;
sort(exa+1,exa+n+1,cmp);
int ans=0;
for(int i=1;i<=n;i++)
{
int tmp=d(i);
ans=max(ans,tmp);
}
printf("Case %d: maximum height = %d\n",++num,ans);
}
return 0;
}

  

方法二:递推法
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
using namespace std;
struct node
{
int x,y,z;
node(int x=,int y=,int z=) : x(x) , y(y) , z(z){}
}exa[];
bool cmp(node a,node b)
{
if(a.x==b.x) return a.y>b.y;
else return a.x>b.x;
} int n;
int dp[]; int main()
{
int num=;
while(scanf("%d",&n)==&&n)
{
memset(dp,,sizeof(dp));
for(int i=;i<=n;i++)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
exa[i]=node(a,b,c);
exa[n+i]=node(b,c,a);
exa[n*+i]=node(b,a,c);
exa[n*+i]=node(a,c,b);
exa[n*+i]=node(c,a,b);
exa[n*+i]=node(c,b,a);
}
n*=;
int ans=;
sort(exa+,exa+n+,cmp);
for(int i=;i<=n;i++)
{
dp[i]=exa[i].z;
for(int j=;j<i;j++)
{
if(exa[i].x<exa[j].x&&exa[i].y<exa[j].y)
{
dp[i]=max(dp[i],dp[j]+exa[i].z);
//cout<<dp[i]<<"ww "<<i<<endl;
}//cout<<dp[i]<<" "<<i<<endl;
}
ans=max(ans,dp[i]);
}
printf("Case %d: maximum height = ",++num);
cout<<ans<<endl;
}
return ;
}

DAG 动态规划 巴比伦塔 B - The Tower of Babylon的更多相关文章

  1. UVA437-The Tower of Babylon(动态规划基础)

    Problem UVA437-The Tower of Babylon Accept: 3648  Submit: 12532Time Limit: 3000 mSec Problem Descrip ...

  2. UVa 437 The Tower of Babylon(经典动态规划)

    传送门 Description Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details ...

  3. [动态规划]UVA437 - The Tower of Babylon

     The Tower of Babylon  Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many d ...

  4. ACM - 动态规划 - UVA437 The Tower of Babylon

    UVA437 The Tower of Babylon 题解 初始时给了 \(n\) 种长方体方块,每种有无限个,对于每一个方块,我们可以选择一面作为底.然后用这些方块尽可能高地堆叠成一个塔,要求只有 ...

  5. UVA The Tower of Babylon

    The Tower of Babylon Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many det ...

  6. UVa 437 The Tower of Babylon

    Description   Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details of ...

  7. uva The Tower of Babylon[LIS][dp]

    转自:https://mp.weixin.qq.com/s/oZVj8lxJH6ZqL4sGCXuxMw The Tower of Babylon(巴比伦塔) Perhaps you have hea ...

  8. POJ 2241 The Tower of Babylon

    The Tower of Babylon Time Limit: 1000ms Memory Limit: 65536KB This problem will be judged on PKU. Or ...

  9. Uva437 The Tower of Babylon

    https://odzkskevi.qnssl.com/5e1fdf8cae5d11a8f572bae96d6095c0?v=1507521965 Perhaps you have heard of ...

随机推荐

  1. rtsp信令交互流程

  2. Electron学习(一)——— electron的安装

    前言 本人是做java开发的(菜鸟),做web项目的朋友们基本上都会遇到同样一个,永远不知道客户会怎么样使用,或者说永远不知道客户会用什么浏览器打开我们做出来的应用,就算你跟他说明了一定得用某某某浏览 ...

  3. Java提高篇之理解java的三大特性——封装

    三大特性之—封装 封装从字面上来理解就是包装的意思,专业点就是信息隐藏,是指利用抽象数据类型将数据和基于数据的操作封装在一起,使其构成一个不可分割的独立实体,数据被保护在抽象数据类型的内部,尽可能地隐 ...

  4. Python JSON 基本使用

    JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式,简洁和清晰的层次结构使得 JSON 成为理想的数据交换语言. 易于人阅读和编写,同时也易于机器解析和生成, ...

  5. [转]How to Improve Entity Framework Add Performance?

    本文转自:http://entityframework.net/improve-ef-add-performance When you overuse the Add() method for mul ...

  6. 《深入理解Java虚拟机》(一)Java虚拟机发展史

    Java虚拟机发展史 1.Sun Classic/Exact VM 1.Sun Classic:世界第一款商用Java虚拟机. 2.Exact VM:准确式GC:虚拟机可以知道内存中的某个位置的数据具 ...

  7. DDD初探

    领域驱动设计(DDD)对开发者来说是面向对象设计的自然进化 总的来说DDD包括两个部分: 分析部分 分析部分通常是由开发人员去和领域专家沟通业务知识,但是开发人员和领域专家是有代沟的, 为了简化沟通成 ...

  8. [转载] C# 调用C++ DLL 的类型转换

    //C#调用C++的DLL搜集整理的所有数据类型转换方式,可能会有重复或者多种方案,自己多测试 //c++:HANDLE(void *) ---- c#:System.IntPtr //c++:Byt ...

  9. 数据结构(java版)学习笔记(四)——线性表之循环链表

    单向循环链表 PS:有阴影的结点是头结点 概念: 最后一个结点的链域值不为NULL,而是指向头结点 特点: 从表中的任意结点出发,都可以找到表中其他结点 循环条件 p==h 双向链表 概念 链表中的每 ...

  10. Java基础——Oracle(七)

    一.概述 pl/sql (procedural lanaguage/sql)是 oracle 在标准 sql 上的扩展 .不仅允许嵌入sql 语言,还可以定义变量和常量,允许使用条件语句和循环语句,允 ...