pandas之时间序列
Pandas中提供了许多用来处理时间格式文本的方法,包括按不同方法生成一个时间序列,修改时间的格式,重采样等等。
按不同的方法生成时间序列
In [7]: import pandas as pd
# 按起始和终止日期以及步长生成时间序列
In [8]: pd.date_range(start="20171212",end="20180101",freq="D")
Out[8]:
DatetimeIndex(['2017-12-12', '2017-12-13', '2017-12-14', '2017-12-15',
'2017-12-16', '2017-12-17', '2017-12-18', '2017-12-19',
'2017-12-20', '2017-12-21', '2017-12-22', '2017-12-23',
'2017-12-24', '2017-12-25', '2017-12-26', '2017-12-27',
'2017-12-28', '2017-12-29', '2017-12-30', '2017-12-31',
'2018-01-01'],
dtype='datetime64[ns]', freq='D')
In [9]: pd.date_range(start="20171212",end="20180101",freq="10D")
Out[9]: DatetimeIndex(['2017-12-12', '2017-12-22', '2018-01-01'], dtype='datetime64[ns]', freq='10D')
# 按起始日期,数量和步长生成时间序列
In [10]: pd.date_range(start="20171212",periods=10,freq="10D")
Out[10]:
DatetimeIndex(['2017-12-12', '2017-12-22', '2018-01-01', '2018-01-11',
'2018-01-21', '2018-01-31', '2018-02-10', '2018-02-20',
'2018-03-02', '2018-03-12'],
dtype='datetime64[ns]', freq='10D')
In [11]: pd.date_range(start="20171212",periods=10,freq="M")
Out[11]:
DatetimeIndex(['2017-12-31', '2018-01-31', '2018-02-28', '2018-03-31',
'2018-04-30', '2018-05-31', '2018-06-30', '2018-07-31',
'2018-08-31', '2018-09-30'],
dtype='datetime64[ns]', freq='M')
# 如果取不到最后一天,这个时间序列就会停止在前一个生成的日期处
In [12]: pd.date_range(start="20171212",end="20180105",freq="10D")
Out[12]: DatetimeIndex(['2017-12-12', '2017-12-22', '2018-01-01'], dtype='datetime64[ns]', freq='10D')
案例
假如我们现在有美国2015年12月到2017年9月的911求救电话信息。(数据来源:Emergency - 911 Calls)假如我们需要统计并绘制每个月的各类求救电话的变化情况,应该怎么做呢?
# coding=utf-8
import pandas as pd
from matplotlib import pyplot as plt
from matplotlib import font_manager
filepath = "./911.csv"
df = pd.read_csv(filepath)
font = font_manager.FontProperties(fname="C:\Windows\Fonts\msyh.ttc")
df["timeStamp"] = pd.to_datetime(df["timeStamp"])
df.set_index("timeStamp", inplace=True)
temp_list = df["title"].str.split(":")
cate_list = [i[0] for i in temp_list]
df["cate"] = cate_list
plt.figure(figsize=(20, 8), dpi=80)
# 分组
for group_name, group_data in df.groupby(by="cate"):
# 对不同分类进行绘图
count_by_month = group_data.resample("M").count()["title"]
_x = count_by_month.index
_y = count_by_month.values
plt.plot(range(len(_x)), _y, label=group_name)
_x = _x.strftime("%Y-%m")
plt.xticks(range(len(_x)), _x, rotation=45)
plt.legend(loc="best")
plt.show()
结果如图:
pandas之时间序列的更多相关文章
- pandas处理时间序列(4): 移动窗口函数
六.移动窗口函数 移动窗口和指数加权函数类别如↓: rolling_mean 移动窗口的均值 pandas.rolling_mean(arg, window, min_periods=None, fr ...
- pandas处理时间序列(3):重采样与频率转换
五.重采样与频率转换 1. resample方法 rng = pd.date_range('1/3/2019',periods=1000,freq='D') rng 2. 降采样 (1)resampl ...
- 03. Pandas 2| 时间序列
1.时间模块:datetime datetime模块,主要掌握:datetime.date(), datetime.datetime(), datetime.timedelta() 日期解析方法:pa ...
- pandas处理时间序列(2):DatetimeIndex、索引和选择、含有重复索引的时间序列、日期范围与频率和移位、时间区间和区间算术
一.时间序列基础 1. 时间戳索引DatetimeIndex 生成20个DatetimeIndex from datetime import datetime dates = pd.date_rang ...
- pandas处理时间序列(1):pd.Timestamp()、pd.Timedelta()、pd.datetime( )、 pd.Period()、pd.to_timestamp()、datetime.strftime()、pd.to_datetime( )、pd.to_period()
Pandas库是处理时间序列的利器,pandas有着强大的日期数据处理功能,可以按日期筛选数据.按日期显示数据.按日期统计数据. pandas的实际类型主要分为: timestamp(时间戳) ...
- pandas 之 时间序列索引
import numpy as np import pandas as pd 引入 A basic kind of time series object in pandas is a Series i ...
- pandas之时间序列(data_range)、重采样(resample)、重组时间序列(PeriodIndex)
1.data_range生成时间范围 a) pd.date_range(start=None, end=None, periods=None, freq='D') start和end以及freq配合能 ...
- pandas之时间序列笔记
时间戳tiimestamp:固定的时刻->pd.Timestamp 固定时期period:比如2016年3月份,再如2015年销售额->pd.Period 时间间隔interval:由起始 ...
- 笔记 | pandas之时间序列学习随笔1
1. 时间序列自动生成 ts = pd.Series(np.arange(1, 901), index=pd.date_range('2010-1-1', periods=900)) 最终生成了从20 ...
随机推荐
- 11.17 luffycity(7)完结
2018-11-17 15:59:01 路飞项目已经完结!后面已是flask的学习!然后还有十几天的课程等回学校再看 明天归校!! 开始全面整理自己学习的知识,整理博客!还有好多面试题!233333 ...
- postgresql数据库和mysql数据库的对比分析
1.Posgresql是进程模式,多进程,单线程,类似的还有Oracle.而MYSQL采用的是线程模式,单进程,多线程,对此,大家在运行数据库的时候可以查看任务管理器,SQL Server也是如此. ...
- common lisp里的几个操作符
setf 赋值操作符,定义一个全局变量.返回值是最后一个赋值的结果. let 局部变量操作符.let表达式有两部分组成.第一部分是任意多的变量赋值,他们被包裹在一个()中,第二部分是任意数量的表示式 ...
- 23、svn与打飞机
svn与git 打飞机 css *{margin:0; padding:0;} html,body{width:100%; height:100%; overflow: hidden;} .main{ ...
- vue中key的作用 v-for里警告 v-if的复用
vue总是会复用页面上已经存在的dom,区别的方法是加上key就可以,还设有v-for时候的警告也是如此key的作用是区别这条跟那条的.<body> <div id="ap ...
- nginx 禁止恶意域名解析
server { listen default_server; server_name _; ssl on; ssl_certificate /etc/nginx/cert/aaaa.pem; ssl ...
- python开发 *进程数据隔离.守护进程,进程同步工具 * 180725
进程数据隔离.守护进程,进程同步工具 一.进程之间的数据隔离: from multiprocessing import Process n=100 #主程序中变量n= def func(): glob ...
- tomcat8.5.11安装教程
备份,省得以后自己又忘了. 1.下载tomcat 2.环境变量设置 打开环境变量设置 注意,要点击下面红框处的新建按钮,而不要点击上面的.新建系统变量: 注意,变量名一定得设置为CATALINA_HO ...
- springboot+@async异步线程池的配置及应用
示例: 1. 配置 @EnableAsync @Configuration public class TaskExecutorConfiguration { @Autowired private Ta ...
- usb_camera