Dynamic Programming | Set 1 (Overlapping Subproblems Property)Dynamic Programming | Set 2 (Optimal Substructure Property) 中我们已经讨论了重叠子问题和最优子结构性质,现在我们来看一个可以使用动态规划来解决的问题:最长上升子序列(Longest Increasing Subsequence(LIS))。

最长上升子序列问题,致力于在一个给定的序列中找到一个最长的子序列,该子序列中的元素按升序排列。例如,序列{10, 22, 9, 33, 21, 50, 41, 60, 80}的最长上升子序列的长度为6,最长上升子序列为{10, 22, 33, 50, 60, 80}。

Optimal Substructure:

假设arr[0..n-1]为输入数组,L(i)是以下标i结束的数组的最长上升子序列的长度,满足arr[i]是LIS的一部分,即arr[i]是该LIS中的最后一个元素,那么L(i)可以递归的表示为:

L(i) = { 1 + Max ( L(j) ) } where j < i and arr[j] < arr[i] and if there is no such j then L(i) = 1

要获得一个给定数组LIS的长度,我们需要返回 max(L(i)) where 0 < i < n

因此,LIS问题具有最优子结构性质,因此该问题可以使用子问题的方法来求解。

Overlapping Subproblems:

以下是LIS问题的一个简单递归版本程序。

/* A Naive recursive implementation of LIS problem */
#include<stdio.h>
#include<stdlib.h> /* To make use of recursive calls, this function must return two things:
1) Length of LIS ending with element arr[n-1]. We use max_ending_here
for this purpose
2) Overall maximum as the LIS may end with an element before arr[n-1]
max_ref is used this purpose.
The value of LIS of full array of size n is stored in *max_ref which is our final result
*/
int _lis( int arr[], int n, int *max_ref)
{
/* Base case */
if(n == 1)
return 1; int res, max_ending_here = 1; // length of LIS ending with arr[n-1] /* Recursively get all LIS ending with arr[0], arr[1] ... ar[n-2]. If
arr[i-1] is smaller than arr[n-1], and max ending with arr[n-1] needs
to be updated, then update it */
for(int i = 1; i < n; i++)
{
res = _lis(arr, i, max_ref);
if (arr[i-1] < arr[n-1] && res + 1 > max_ending_here)
max_ending_here = res + 1;
} // Compare max_ending_here with the overall max. And update the
// overall max if needed
if (*max_ref < max_ending_here)
*max_ref = max_ending_here; // Return length of LIS ending with arr[n-1]
return max_ending_here;
} // The wrapper function for _lis()
int lis(int arr[], int n)
{
// The max variable holds the result
int max = 1; // The function _lis() stores its result in max
_lis( arr, n, &max ); // returns max
return max;
} /* Driver program to test above function */
int main()
{
int arr[] = { 10, 22, 9, 33, 21, 50, 41, 60 };
int n = sizeof(arr)/sizeof(arr[0]);
printf("Length of LIS is %d\n", lis( arr, n ));
getchar();
return 0;
}

考虑以上实现,如下是当数组大小为4时的递归树,lis(n)为以n为最后一个元素时,数组的LIS的长度。

不难发现,其中有子问题被重复计算。因此,该问题具有重叠子结构性质,通过Memoization或者Tabulation,可以防止子问题的重复计算。如下,是LIS问题的tabluated实现。

/* Dynamic Programming implementation of LIS problem */
#include<stdio.h>
#include<stdlib.h> /* lis() returns the length of the longest increasing subsequence in
arr[] of size n */
int lis( int arr[], int n )
{
int *lis, i, j, max = 0;
lis = (int*) malloc ( sizeof( int ) * n ); /* Initialize LIS values for all indexes */
for ( i = 0; i < n; i++ )
lis[i] = 1; /* Compute optimized LIS values in bottom up manner */
for ( i = 1; i < n; i++ )
for ( j = 0; j < i; j++ )
if ( arr[i] > arr[j] && lis[i] < lis[j] + 1)
lis[i] = lis[j] + 1; /* Pick maximum of all LIS values */
for ( i = 0; i < n; i++ )
if ( max < lis[i] )
max = lis[i]; /* Free memory to avoid memory leak */
free( lis ); return max;
} /* Driver program to test above function */
int main()
{
int arr[] = { 10, 22, 9, 33, 21, 50, 41, 60 };
int n = sizeof(arr)/sizeof(arr[0]);
printf("Length of LIS is %d\n", lis( arr, n ) ); getchar();
return 0;
}

注意,以上的动态规划解法需要的时间复杂度为O(n^2),实际上LIS问题有O(nLogn)的解法(see this)。在这边,我们并没有讨论O(nLogn)的解法,此处,只是用这篇文章来作为动态规划的一个简单例子。

补充一个最笨的方法:将所有的子序列使用dfs枚举出来,看其最大长度是多少,代码如下:

#include <iostream>
#include <vector>
using namespace std; void dfs(const vector<int> &input, vector<vector<int> > &ret, vector<int> &path, int pos) {
if (pos == input.size()) {
ret.push_back(path);
return;
} for (int i = 0; i != 2; i++) {
if (i == 0) {
path.push_back(input[pos]);
dfs(input, ret, path, pos + 1);
path.pop_back();
} else {
dfs(input, ret, path, pos + 1);
}
}
} int main()
{
vector<int> input = {1,2,3};
cout << "input.size() = " << input.size() << endl;
vector<vector<int>> ret;
vector<int> path; dfs(input, ret, path, 0); for (vector<vector<int> >::const_iterator itr = ret.begin(); itr != ret.end(); itr++) {
cout << "--" << " ";
for (vector<int>::const_iterator it = itr->begin(); it != itr->end(); it++) {
cout << *it << " ";
}
cout << endl;
}
} /*
Output:
-- 1 2 3
-- 1 2
-- 1 3
-- 1
-- 2 3
-- 2
-- 3
--
*/

Dynamic Programming | Set 3 (Longest Increasing Subsequence)的更多相关文章

  1. Dynamic Programming | Set 4 (Longest Common Subsequence)

    首先来看什么是最长公共子序列:给定两个序列,找到两个序列中均存在的最长公共子序列的长度.子序列需要以相关的顺序呈现,但不必连续.例如,"abc", "abg", ...

  2. [Algorithms] Using Dynamic Programming to Solve longest common subsequence problem

    Let's say we have two strings: str1 = 'ACDEB' str2 = 'AEBC' We need to find the longest common subse ...

  3. [LeetCode] Longest Increasing Subsequence 最长递增子序列

    Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...

  4. [Leetcode] Binary search, DP--300. Longest Increasing Subsequence

    Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...

  5. [LeetCode] Number of Longest Increasing Subsequence 最长递增序列的个数

    Given an unsorted array of integers, find the number of longest increasing subsequence. Example 1: I ...

  6. [Algorithms] Longest Increasing Subsequence

    The Longest Increasing Subsequence (LIS) problem requires us to find a subsequence t of a given sequ ...

  7. LeetCode 300. Longest Increasing Subsequence最长上升子序列 (C++/Java)

    题目: Given an unsorted array of integers, find the length of longest increasing subsequence. Example: ...

  8. [LeetCode] 300. Longest Increasing Subsequence 最长递增子序列

    Given an unsorted array of integers, find the length of longest increasing subsequence. Example: Inp ...

  9. [LeetCode] 673. Number of Longest Increasing Subsequence 最长递增序列的个数

    Given an unsorted array of integers, find the number of longest increasing subsequence. Example 1: I ...

随机推荐

  1. 小程序获取微信用户的openid

    小程序获取微信用户的openid //index.js //获取应用实例 const app = getApp() Page({ globalData: { appid: '11121221a89e0 ...

  2. @Bean 的用法

    @Bean是一个方法级别上的注解,主要用在@Configuration注解的类里,也可以用在@Component注解的类里.添加的bean的id为方法名 定义bean 下面是@Configuratio ...

  3. ReactNative项目结构目录详解

    在使用 react-native init TestProject 在新建项目时,会看到如下目录 React Native结构目录 名称 描述 android目录 Android项目目录,包含了使用A ...

  4. week07 13.4 NewsPipeline之 三 News Deduper

    还是循环将Q2中的东西拿出来 然后查重(去mongodb里面把一天之内的新闻都拿出来,然后把拿到的新的新闻和mongodb里一天内的新闻组一个 tf-idf的对比)可看13.3 相似度检查 如果超过一 ...

  5. docker-compose学习

    该实践是在已经安装了docker的基础上,如果还未安装docker,请先安装docker : https://www.cnblogs.com/theRhyme/p/9813019.html docke ...

  6. combox省市县三级联动

    /** * Name 获取省份(初始化) */ function showProvince(id1, id2, id3) { var paramData = {}; $.ajax({ url: osp ...

  7. springcloud ConfigServer的工作原理

    前话 根据前文得知,bootstrapContext引入了PropertySourceLocator接口供外部源加载配置,但作用是应用于子级ApplicationContext的环境变量Environ ...

  8. Java14-java语法基础(十三)接口

    Java14-java语法基础(十三)接口 一.接口 1.接口的作用 Java出于安全性.简化程序结构的考虑,不支持多继承而仅支持单继承.然而实际问题中很多情况下仅仅依靠单继承并不能将复杂的问题描述清 ...

  9. Linux下搭建ftp服务

    Linux下ftp服务可以通过搭建vsftpd服务来实现,以CentOS为例,首先查看系统中是否安装了vsftpd,可以通过执行命令 rpm -qa | grep vsftpd 来查看是否安装相应的包 ...

  10. dos批处理(bat)运行exe

    @echo off SETLOCAL ENABLEDELAYEDEXPANSIONREM 延迟环境变量扩展 color E echo operate:1.start启动 2.stop停止 3.exit ...