Dynamic Programming | Set 1 (Overlapping Subproblems Property)Dynamic Programming | Set 2 (Optimal Substructure Property) 中我们已经讨论了重叠子问题和最优子结构性质,现在我们来看一个可以使用动态规划来解决的问题:最长上升子序列(Longest Increasing Subsequence(LIS))。

最长上升子序列问题,致力于在一个给定的序列中找到一个最长的子序列,该子序列中的元素按升序排列。例如,序列{10, 22, 9, 33, 21, 50, 41, 60, 80}的最长上升子序列的长度为6,最长上升子序列为{10, 22, 33, 50, 60, 80}。

Optimal Substructure:

假设arr[0..n-1]为输入数组,L(i)是以下标i结束的数组的最长上升子序列的长度,满足arr[i]是LIS的一部分,即arr[i]是该LIS中的最后一个元素,那么L(i)可以递归的表示为:

L(i) = { 1 + Max ( L(j) ) } where j < i and arr[j] < arr[i] and if there is no such j then L(i) = 1

要获得一个给定数组LIS的长度,我们需要返回 max(L(i)) where 0 < i < n

因此,LIS问题具有最优子结构性质,因此该问题可以使用子问题的方法来求解。

Overlapping Subproblems:

以下是LIS问题的一个简单递归版本程序。

/* A Naive recursive implementation of LIS problem */
#include<stdio.h>
#include<stdlib.h> /* To make use of recursive calls, this function must return two things:
1) Length of LIS ending with element arr[n-1]. We use max_ending_here
for this purpose
2) Overall maximum as the LIS may end with an element before arr[n-1]
max_ref is used this purpose.
The value of LIS of full array of size n is stored in *max_ref which is our final result
*/
int _lis( int arr[], int n, int *max_ref)
{
/* Base case */
if(n == 1)
return 1; int res, max_ending_here = 1; // length of LIS ending with arr[n-1] /* Recursively get all LIS ending with arr[0], arr[1] ... ar[n-2]. If
arr[i-1] is smaller than arr[n-1], and max ending with arr[n-1] needs
to be updated, then update it */
for(int i = 1; i < n; i++)
{
res = _lis(arr, i, max_ref);
if (arr[i-1] < arr[n-1] && res + 1 > max_ending_here)
max_ending_here = res + 1;
} // Compare max_ending_here with the overall max. And update the
// overall max if needed
if (*max_ref < max_ending_here)
*max_ref = max_ending_here; // Return length of LIS ending with arr[n-1]
return max_ending_here;
} // The wrapper function for _lis()
int lis(int arr[], int n)
{
// The max variable holds the result
int max = 1; // The function _lis() stores its result in max
_lis( arr, n, &max ); // returns max
return max;
} /* Driver program to test above function */
int main()
{
int arr[] = { 10, 22, 9, 33, 21, 50, 41, 60 };
int n = sizeof(arr)/sizeof(arr[0]);
printf("Length of LIS is %d\n", lis( arr, n ));
getchar();
return 0;
}

考虑以上实现,如下是当数组大小为4时的递归树,lis(n)为以n为最后一个元素时,数组的LIS的长度。

不难发现,其中有子问题被重复计算。因此,该问题具有重叠子结构性质,通过Memoization或者Tabulation,可以防止子问题的重复计算。如下,是LIS问题的tabluated实现。

/* Dynamic Programming implementation of LIS problem */
#include<stdio.h>
#include<stdlib.h> /* lis() returns the length of the longest increasing subsequence in
arr[] of size n */
int lis( int arr[], int n )
{
int *lis, i, j, max = 0;
lis = (int*) malloc ( sizeof( int ) * n ); /* Initialize LIS values for all indexes */
for ( i = 0; i < n; i++ )
lis[i] = 1; /* Compute optimized LIS values in bottom up manner */
for ( i = 1; i < n; i++ )
for ( j = 0; j < i; j++ )
if ( arr[i] > arr[j] && lis[i] < lis[j] + 1)
lis[i] = lis[j] + 1; /* Pick maximum of all LIS values */
for ( i = 0; i < n; i++ )
if ( max < lis[i] )
max = lis[i]; /* Free memory to avoid memory leak */
free( lis ); return max;
} /* Driver program to test above function */
int main()
{
int arr[] = { 10, 22, 9, 33, 21, 50, 41, 60 };
int n = sizeof(arr)/sizeof(arr[0]);
printf("Length of LIS is %d\n", lis( arr, n ) ); getchar();
return 0;
}

注意,以上的动态规划解法需要的时间复杂度为O(n^2),实际上LIS问题有O(nLogn)的解法(see this)。在这边,我们并没有讨论O(nLogn)的解法,此处,只是用这篇文章来作为动态规划的一个简单例子。

补充一个最笨的方法:将所有的子序列使用dfs枚举出来,看其最大长度是多少,代码如下:

#include <iostream>
#include <vector>
using namespace std; void dfs(const vector<int> &input, vector<vector<int> > &ret, vector<int> &path, int pos) {
if (pos == input.size()) {
ret.push_back(path);
return;
} for (int i = 0; i != 2; i++) {
if (i == 0) {
path.push_back(input[pos]);
dfs(input, ret, path, pos + 1);
path.pop_back();
} else {
dfs(input, ret, path, pos + 1);
}
}
} int main()
{
vector<int> input = {1,2,3};
cout << "input.size() = " << input.size() << endl;
vector<vector<int>> ret;
vector<int> path; dfs(input, ret, path, 0); for (vector<vector<int> >::const_iterator itr = ret.begin(); itr != ret.end(); itr++) {
cout << "--" << " ";
for (vector<int>::const_iterator it = itr->begin(); it != itr->end(); it++) {
cout << *it << " ";
}
cout << endl;
}
} /*
Output:
-- 1 2 3
-- 1 2
-- 1 3
-- 1
-- 2 3
-- 2
-- 3
--
*/

Dynamic Programming | Set 3 (Longest Increasing Subsequence)的更多相关文章

  1. Dynamic Programming | Set 4 (Longest Common Subsequence)

    首先来看什么是最长公共子序列:给定两个序列,找到两个序列中均存在的最长公共子序列的长度.子序列需要以相关的顺序呈现,但不必连续.例如,"abc", "abg", ...

  2. [Algorithms] Using Dynamic Programming to Solve longest common subsequence problem

    Let's say we have two strings: str1 = 'ACDEB' str2 = 'AEBC' We need to find the longest common subse ...

  3. [LeetCode] Longest Increasing Subsequence 最长递增子序列

    Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...

  4. [Leetcode] Binary search, DP--300. Longest Increasing Subsequence

    Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...

  5. [LeetCode] Number of Longest Increasing Subsequence 最长递增序列的个数

    Given an unsorted array of integers, find the number of longest increasing subsequence. Example 1: I ...

  6. [Algorithms] Longest Increasing Subsequence

    The Longest Increasing Subsequence (LIS) problem requires us to find a subsequence t of a given sequ ...

  7. LeetCode 300. Longest Increasing Subsequence最长上升子序列 (C++/Java)

    题目: Given an unsorted array of integers, find the length of longest increasing subsequence. Example: ...

  8. [LeetCode] 300. Longest Increasing Subsequence 最长递增子序列

    Given an unsorted array of integers, find the length of longest increasing subsequence. Example: Inp ...

  9. [LeetCode] 673. Number of Longest Increasing Subsequence 最长递增序列的个数

    Given an unsorted array of integers, find the number of longest increasing subsequence. Example 1: I ...

随机推荐

  1. python大法好——异常

    ---恢复内容开始--- Python 异常处理 python提供了两个非常重要的功能来处理python程序在运行中出现的异常和错误.你可以使用该功能来调试python程序. 异常处理: 本站Pyth ...

  2. Java 就业班 Web框架

  3. ReactiveX 学习笔记(22)使用 RxJS + Angular 进行 GUI 编程

    课题 程序界面由3个文本编辑框和1个文本标签组成. 要求文本标签实时显示3个文本编辑框所输入的数字之和. 文本编辑框输入的不是合法数字时,将其值视为0. 3个文本编辑框的初值分别为1,2,3. 创建工 ...

  4. 关于如何安装使用Git、tortoiseGit、Git@osc

    摘要: 讲解git在git@osc上使用的正确入门姿势. 关于Git代码托管的好处,这里就不再进行说明了.相信想去使用的人都应该有所了解啦.在使用开源中国里面的git@osc时,我们得先做入下几个工作 ...

  5. 记号一下selenium+Firefox自动下载的参数

    参考: https://blog.csdn.net/wxstar8/article/details/80782556 https://blog.csdn.net/xiaoguanyusb/articl ...

  6. SSM商城项目(十)

    1.   学习计划 1.使用freemarker实现网页静态化 a)Freemarker的使用方法 b)Freemarker模板的语法 c)Freemarker整合springmvc 2.Active ...

  7. 算法练习LeetCode初级算法之数组

    删除数组中的重复项 官方解答: 旋转数组 存在重复元素 只出现一次的数     官方解答:  同一个字符进行两次异或运算就会回到原来的值 两个数组的交集 II import java.util.Arr ...

  8. 254. Factor Combinations 返回所有因数组合

    [抄题]: Numbers can be regarded as product of its factors. For example, 8 = 2 x 2 x 2; = 2 x 4. Write ...

  9. react项目的react-router-dom路由的使用

    现在测试一下react-router-dom路由的使用,首先在App.js这个文件搭配路由 import React, { Component } from 'react'; import {Link ...

  10. Shell 数值、字符串比较

    Shell脚本中,数值与字符串比较是不同的,因此要注意(注意[]括号内参数和括号之间有一个空格). 一.数值比较 -eq 等于,如: if [ $a -eq $b ] -ne    不等于,如: if ...