思路

step 1: sum = summary(model)

step 2: sum有好多属性,直接根据属性名称引用(\()即可, 如:
+ > sum\)call 返回 model 使用的模型语句

+ > sum\(coefficients; 返回一个列表,可以继续引用,如下
+ > sum\)coefficients[1 : 12]; 返回一个列表的一个切片,还可以继续切片

+ > sum$coefficients[1 : 12][2]; 返回一个列表的一个切片的第二个元素

下面是一些 测试代码,未整理,可以大致学习一下

用'demo()'来看一些示范程序,用'help()'来阅读在线帮助文件,或
用'help.start()'通过HTML浏览器来看帮助文件。
用'q()'退出R. [Workspace loaded from ~/.RData] > y=c(53,434,111,38,108,48)
> x1=c(1,2,3,1,2,3)
> x2=c(1,2,1,2,1,2)
> log.glm <-glm(y~x1+x2,family = possion(link=log))
Error in possion(link = log) : 没有"possion"这个函数
> log.glm <-glm(y~x1+x2,family = possion(link=log),data=(y,x1,x2))
错误: 意外的',' in "log.glm <-glm(y~x1+x2,family = possion(link=log),data=(y,"
> dataframe <-data.frame(y,x1,x2)
> head(dataframe)
y x1 x2
1 53 1 1
2 434 2 2
3 111 3 1
4 38 1 2
5 108 2 1
6 48 3 2
> log.glm <-glm(y~x1+x2,family = possion(link=log),data=data.frame(y,x1,x2))
Error in possion(link = log) : 没有"possion"这个函数
> log.glm <-glm(y~x1+x2,family = poisson(link=log),data=data.frame(y,x1,x2))
> summary(log.glm) Call:
glm(formula = y ~ x1 + x2, family = poisson(link = log), data = data.frame(y,
x1, x2)) Deviance Residuals:
1 2 3 4 5 6
-3.1382 16.6806 0.8189 -11.0398 1.8210 -12.6942 Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.59532 0.15792 22.767 < 2e-16 ***
x1 0.12915 0.04370 2.955 0.00312 **
x2 0.64803 0.07483 8.660 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 (Dispersion parameter for poisson family taken to be 1) Null deviance: 662.84 on 5 degrees of freedom
Residual deviance: 575.10 on 3 degrees of freedom
AIC: 619.08 Number of Fisher Scoring iterations: 5 > log.glm.x1
错误: 找不到对象'log.glm.x1'
>
>
>
>
>
>
> summary(log.glm) Call:
glm(formula = y ~ x1 + x2, family = poisson(link = log), data = data.frame(y,
x1, x2)) Deviance Residuals:
1 2 3 4 5 6
-3.1382 16.6806 0.8189 -11.0398 1.8210 -12.6942 Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.59532 0.15792 22.767 < 2e-16 ***
x1 0.12915 0.04370 2.955 0.00312 **
x2 0.64803 0.07483 8.660 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 (Dispersion parameter for poisson family taken to be 1) Null deviance: 662.84 on 5 degrees of freedom
Residual deviance: 575.10 on 3 degrees of freedom
AIC: 619.08 Number of Fisher Scoring iterations: 5 > log.glm.x1
错误: 找不到对象'log.glm.x1'
> help("glm")
> anova(log.glm)
Analysis of Deviance Table Model: poisson, link: log Response: y Terms added sequentially (first to last) Df Deviance Resid. Df Resid. Dev
NULL 5 662.84
x1 1 8.770 4 654.07
x2 1 78.978 3 575.10
> ano= anova(log.glm)
> ano[1]
Df
NULL
x1 1
x2 1
> ano[2]
Deviance
NULL
x1 8.770
x2 78.978
> ano[3]
Resid. Df
NULL 5
x1 4
x2 3
> sum= summary(log.glm)
> sum Call:
glm(formula = y ~ x1 + x2, family = poisson(link = log), data = data.frame(y,
x1, x2)) Deviance Residuals:
1 2 3 4 5 6
-3.1382 16.6806 0.8189 -11.0398 1.8210 -12.6942 Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.59532 0.15792 22.767 < 2e-16 ***
x1 0.12915 0.04370 2.955 0.00312 **
x2 0.64803 0.07483 8.660 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 (Dispersion parameter for poisson family taken to be 1) Null deviance: 662.84 on 5 degrees of freedom
Residual deviance: 575.10 on 3 degrees of freedom
AIC: 619.08 Number of Fisher Scoring iterations: 5 > sum[1]
$call
glm(formula = y ~ x1 + x2, family = poisson(link = log), data = data.frame(y,
x1, x2)) > sum[1,1]
Error in sum[1, 1] : 量度数目不对
> sum[2]
$terms
y ~ x1 + x2
attr(,"variables")
list(y, x1, x2)
attr(,"factors")
x1 x2
y 0 0
x1 1 0
x2 0 1
attr(,"term.labels")
[1] "x1" "x2"
attr(,"order")
[1] 1 1
attr(,"intercept")
[1] 1
attr(,"response")
[1] 1
attr(,".Environment")
<environment: R_GlobalEnv>
attr(,"predvars")
list(y, x1, x2)
attr(,"dataClasses")
y x1 x2
"numeric" "numeric" "numeric" > sum[3]
$family Family: poisson
Link function: log > sum[4]
$deviance
[1] 575.0954 > sum[4,1]
Error in sum[4, 1] : 量度数目不对
> sum Call:
glm(formula = y ~ x1 + x2, family = poisson(link = log), data = data.frame(y,
x1, x2)) Deviance Residuals:
1 2 3 4 5 6
-3.1382 16.6806 0.8189 -11.0398 1.8210 -12.6942 Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.59532 0.15792 22.767 < 2e-16 ***
x1 0.12915 0.04370 2.955 0.00312 **
x2 0.64803 0.07483 8.660 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 (Dispersion parameter for poisson family taken to be 1) Null deviance: 662.84 on 5 degrees of freedom
Residual deviance: 575.10 on 3 degrees of freedom
AIC: 619.08 Number of Fisher Scoring iterations: 5 > sum[5]
$aic
[1] 619.0808 > sum[6]
$contrasts
NULL > sum[8]
$null.deviance
[1] 662.8432 > sum[9]
$df.null
[1] 5 > sum[10]
$iter
[1] 5 > sum$aic
[1] 619.0808
> sum$null.deviance
[1] 662.8432
> sum$residual.deviance
NULL
> sum$residual.devianc
NULL
> sum[11]
$deviance.resid
1 2 3 4 5 6
-3.1382350 16.6805594 0.8189003 -11.0397892 1.8209720 -12.6941833 > summary.aov()
Error in summary.aov() : 缺少参数"object",也没有缺省值
> sum Call:
glm(formula = y ~ x1 + x2, family = poisson(link = log), data = data.frame(y,
x1, x2)) Deviance Residuals:
1 2 3 4 5 6
-3.1382 16.6806 0.8189 -11.0398 1.8210 -12.6942 Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.59532 0.15792 22.767 < 2e-16 ***
x1 0.12915 0.04370 2.955 0.00312 **
x2 0.64803 0.07483 8.660 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 (Dispersion parameter for poisson family taken to be 1) Null deviance: 662.84 on 5 degrees of freedom
Residual deviance: 575.10 on 3 degrees of freedom
AIC: 619.08 Number of Fisher Scoring iterations: 5 > sum$coefficients
Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.5953201 0.15791713 22.767132 9.709542e-115
x1 0.1291456 0.04370053 2.955240 3.124256e-03
x2 0.6480267 0.07482977 8.660013 4.717107e-18
> sum$coefficients[4]
[1] 0.1579171
> sum$coefficients[5]
[1] 0.04370053
> sum$coefficients[6]
[1] 0.07482977
> sum$coefficients[1]
[1] 3.59532
> sum$coefficients[1..2]
错误: unexpected numeric constant in "sum$coefficients[1..2"
> sum$coefficients[1:2]
[1] 3.5953201 0.1291456
> sum$coefficients[1:5]
[1] 3.59532005 0.12914558 0.64802675 0.15791713 0.04370053
> sum$coefficients[11:12]
[1] 3.124256e-03 4.717107e-18
> sum$coefficients[11:12][1]
[1] 0.003124256
> sum$coefficients[11:12][2]
[1] 4.717107e-18

如何读取R 的sumary()结果的更多相关文章

  1. R语言基础

    一.扩展包的基本操作语句R安装好之后,默认自带了"stats" "graphics"  "grDevices" "utils&qu ...

  2. R语言︱文件读入、读出一些方法罗列(批量xlsx文件、数据库、文本txt、文件夹)

    笔者寄语:小规模的读取数据的方法较为简单并且多样,但是,批量读取目前看到有以下几种方法:xlsx包.RODBC包.批量转化成csv后读入. R语言中还有一些其他较为普遍的读入,比如代码包,R文件,工作 ...

  3. R语言手册

    在R的官方教程里是这么给R下注解的:一个数据分析和图形显示的程序设计环境(A system for data analysis and visualization which is built bas ...

  4. 让R与Python共舞

    转载:http://ices01.sinaapp.com/?p=129      R(又称R语言)是一款开源的跨平台的数值统计和数值图形化展现 工具.通俗点说,R是用来做统计和画图的.R拥有自己的脚本 ...

  5. Android小例子:使用反射机制来读取图片制作一个图片浏览器

    效果图: 工程文件夹: 该例子可供于新手参考练习,如果有哪里不对的地方,望指正>-< <黑幕下的人> java代码(MainActivity.java): package co ...

  6. ArcGIS二次开发之读取遥感图像像素值的做法

    作者:朱金灿 来源:http://blog.csdn.net/clever101 首先是读取遥感图像的R.G.B波段数据的做法.读取R.G.B波段数据的像素值主要通过IRaster接口的Read方法在 ...

  7. go语言学习笔记---读取文件io/ioutil 包

    io/ioutil 包几个函数方法 名称  作用 备注 ReadAll 读取数据,返回读到的字节 slice 1 ReadDir 读取一个目录,返回目录入口数组 []os.FileInfo, 2 Re ...

  8. GO 文件读取常用的方法

    方式1: 一行一行的方式读取 其中常用的方法就有:ReadString,ReadLine,ReadBytes ReadLine 返回单个行,不包括行尾字节,就是说,返回的内容不包括\n或者\r\n,返 ...

  9. [高性能MYSQL 读后随笔] 关于事务的隔离级别(一)

    一.锁的种类 MySQL中锁的种类很多,有常见的表锁和行锁,也有新加入的Metadata Lock等等,表锁是对一整张表加锁,虽然可分为读锁和写锁,但毕竟是锁住整张表,会导致并发能力下降,一般是做dd ...

随机推荐

  1. rpc调用过程

    在openstack中,各个组件之间的调用遵循RESTful风格,而组件内部各服务之间的相互调用采用rpc远程调用,比如nova-conductor和nova-compute rpc原理: 首先了解什 ...

  2. 代码: 两列图片瀑布流(一次后台取数据,图片懒加载。下拉后分批显示图片。图片高度未知,当图片onload后才显示容器)

    代码: 两列图片瀑布流(一次后台取数据,无ajax,图片懒加载.下拉后分批显示图片.图片高度未知,当图片onload后才显示容器) [思路]: 图片瀑布流,网上代码有多种实现方式,也有各类插件.没找到 ...

  3. zabbix4.0下zabbix-agentd安装

    转:http://www.safecdn.cn/monitor/2018/12/zabbix4-0-zabbix-agentd-install/316.html 一 安装源和Zabbix的依赖包: 1 ...

  4. windows注册表解析说明

    https://www.cnblogs.com/wfq9330/p/9176654.html

  5. lambda表达式,filter,map,reduce,curry,打包与解包和

    当然是函数式那一套黑魔法啦,且听我细细道来. lambda表达式 也就是匿名函数. 用法:lambda 参数列表 : 返回值 例: +1函数 f=lambda x:x+1 max函数(条件语句的写法如 ...

  6. faster rcnn源码阅读笔记2

  7. 记账本,C,Github,util

    package util; import java.awt.Component; import java.awt.Dimension; import javax.swing.JButton; impo ...

  8. python 安装包制作

    1. __init__.py 2.模块1 模块2 3.setup.py from distutils.core import setup setup(name='modules_name',versi ...

  9. vw, vh视区覆盖和自适应图片

      CSS .wrap{width:100vw;height:100vh;background: rgba(0,0,0,0.3);position: fixed;top:0;left:0;text-a ...

  10. Handler实现消息的定时发送

    话不多说,直接上代码 private Handler mHandler = new Handler() { @Override public void handleMessage(Message ms ...