matlab练习程序(Levenberg-Marquardt法最优化)
上一篇博客中介绍的高斯牛顿算法可能会有J'*J为奇异矩阵的情况,这时高斯牛顿法稳定性较差,可能导致算法不收敛。比如当系数都为7或更大的时候,算法无法给出正确的结果。
Levenberg-Marquardt法一定程度上修正了这个问题。
计算迭代系数deltaX公式如下:

当lambda很小的时候,H占主要地位,公式变为高斯牛顿法,当lambda很大的时候,H可以忽略,公式变为最速下降法。该方法提供了更稳定的deltaX。
算法步骤如下:
1.给定初始系数,以及初始优化半径u。
2.计算使用当前系数的模型得到的结果与测量结果差值e。
3.使用迭代公式更新带解算系数。
4.计算更新后系数的模型得到的结果与测量结果差值ecur。
5.如果ecur>e,则u=2*u;否则u=u/2,并且更新模型系数x(k+1)=x(k)+deltaX。
6.判断算法是否收敛,不收敛返回2,否则结束。
代码如下:
clear all;
close all;
clc;
warning off all; a=;b=;c=; %待求解的系数 x=(:0.01:)';
w=rand(length(x),)*-; %生成噪声
y=exp(a*x.^+b*x+c)+w; %带噪声的模型
plot(x,y,'.') pre=rand(,);
update=;
u=0.1;
for i=:
if update==
f = exp(pre()*x.^+pre()*x+pre());
g = y-f; %计算误差 p1 = exp(pre()*x.^+pre()*x+pre()).*x.^; %对a求偏导
p2 = exp(pre()*x.^+pre()*x+pre()).*x; %对b求偏导
p3 = exp(pre()*x.^+pre()*x+pre()); %对c求偏导
J = [p1 p2 p3]; %计算雅克比矩阵
H=J'*J;
if i==
e=dot(g,g);
end
end delta = inv(H+u*eye(length(H)))*J'* g;
pcur = pre+delta; %迭代
fcur = exp(pcur()*x.^+pcur()*x+pcur());
ecur = dot(y-fcur,y-fcur); if ecur<e %比较两次差值,新模型好则使用
if norm(pre-pcur)<1e-10
break;
end
u=u/;
pre=pcur;
e=ecur;
update=;
else
u=u*;
update=;
end
end hold on;
plot(x,exp(a*x.^+b*x+c),'r');
plot(x,exp(pre()*x.^+pre()*x+pre()),'g'); %比较一下
[a b c]
pre'
迭代结果,其中散点为带噪声数据,红线为原始模型,绿线为解算模型

参考:
《视觉slam十四讲》
http://www.docin.com/p-63281100.html
matlab练习程序(Levenberg-Marquardt法最优化)的更多相关文章
- matlab练习程序(射线法判断点与多边形关系)
依然是计算几何. 射线法判断点与多边形关系原理如下: 从待判断点引出一条射线,射线与多边形相交,如果交点为偶数,则点不在多边形内,如果交点为奇数,则点在多边形内. 原理虽是这样,有些细节还是要注意一下 ...
- matlab练习程序(高斯牛顿法最优化)
计算步骤如下: 图片来自<视觉slam十四讲>6.2.2节. 下面使用书中的练习y=exp(a*x^2+b*x+c)+w这个模型验证一下,其中w为噪声,a.b.c为待解算系数. 代码如下: ...
- matlab实现高斯牛顿法、Levenberg–Marquardt方法
高斯牛顿法: function [ x_ans ] = GaussNewton( xi, yi, ri) % input : x = the x vector of 3 points % y = th ...
- matlab练习程序(SUSAN检测)
matlab练习程序(SUSAN检测) SUSAN算子既可以检测角点也可以检测边缘,不过角点似乎比不过harris,边缘似乎比不过Canny.不过思想还是有点意思的. 主要思想就是:首先做一个和原图像 ...
- atitit.添加win 系统服务 bat批处理程序服务的法总结instsrv srvany java linux
atitit.添加win 系统服务 bat批处理程序服务的法总结instsrv srvany java linux 系统服务不同于普通视窗系统应用程式.不可能简简单单地通过运行一个EXE就启动视窗系 ...
- atitit.加入win 系统服务 bat批处理程序服务的法总结instsrv srvany java linux
atitit.加入win 系统服务 bat批处理程序服务的法总结instsrv srvany java linux 系统服务不同于普通视窗系统应用程式.不可能简简单单地通过执行一个EXE就启动视窗系 ...
- (转)matlab练习程序(HOG方向梯度直方图)
matlab练习程序(HOG方向梯度直方图)http://www.cnblogs.com/tiandsp/archive/2013/05/24/3097503.html HOG(Histogram o ...
- matlab练习程序(对应点集配准的四元数法)
这个算是ICP算法中的一个关键步骤,单独拿出来看一下. 算法流程如下: 1.首先得到同名点集P和X. 2.计算P和X的均值up和ux. 3.由P和X构造协方差矩阵sigma. 4.由协方差矩阵sigm ...
- matlab练习程序(点集配准的SVD法)
上一篇博客中我们使用了四元数法计算ICP. 本篇我们使用SVD计算ICP. 下面是<视觉slam十四讲>中的计算方法: 计算步骤如下: 我们看到,只要求出了两组点之间的旋转,平移是非常容易 ...
随机推荐
- ubuntu 16.04下使用 python pip的安装问题。
ubuntu 16.04使用 pip安装软件时,不知道为什么不能使用sudo pip install XXX 需要使用的是:python -m pip install XXX才可以.
- 理解 Python 的执行方式,与字节码 bytecode 玩耍 (下)
上次写到,Python 的执行方式是把代码编译成bytecode(字节码)指令,然后由虚拟机来执行这些 bytecode 而 bytecode 长成这个样子: b'|\x00\x00d\x01\x0 ...
- Linux学习笔记之十二————vim编辑器的分屏操作
一.分屏操作: sp: 上下分屏,后可跟文件名 vsp: 左右分屏,后可跟文件名 Ctr+w+w: 在多个窗口切换 二.启动分屏: 1.使用大写O参数进行垂直分屏 $ vim -On file1 fi ...
- CentOS 安装 kafka
首先确保JDK已正确安装并设置好环境变量 安装Zookeeper 到官网下载: https://mirrors.tuna.tsinghua.edu.cn/apache/zookeeper/ zooke ...
- 从零开始学 Web 之 移动Web(六)响应式布局
大家好,这里是「 从零开始学 Web 系列教程 」,并在下列地址同步更新...... github:https://github.com/Daotin/Web 微信公众号:Web前端之巅 博客园:ht ...
- Hadoop2源码分析-YARN RPC 示例介绍
1.概述 之前在<Hadoop2源码分析-RPC探索实战>一文当中介绍了Hadoop的RPC机制,今天给大家分享关于YARN的RPC的机制.下面是今天的分享目录: YARN的RPC介绍 Y ...
- 华为云数据库中间件DDM性能卓越,遥遥领先于业界
就说一句话吧,后来者居上,不服不行.
- REX:EOS资源租赁平台详解
关键字:REX,资源交易,资源租赁,系统费用,bancor,成熟期,EOS,eosio.system,voting EOSIO 智能合约在v1.6.0版本增加了一个system合约使用的例子,可提供E ...
- 内核开发知识第二讲,编写Kerner 程序中注意的问题.
一丶函数多线程的安全问题 什么是函数多线程安全. 简单来说就是 ,一个函数在调用过程中.还没有返回的时候.再次被其他线程调用了.但是函数执行的结果是可靠的.就可以了说这个函数是安全的. 比如我们在用户 ...
- 【PyTorch深度学习60分钟快速入门 】Part5:数据并行化
在本节中,我们将学习如何利用DataParallel使用多个GPU. 在PyTorch中使用多个GPU非常容易,你可以使用下面代码将模型放在GPU上: model.gpu() 然后,你可以将所有张 ...