1、傅里叶变换
  傅里叶变换是信号领域沟通时域和频域的桥梁,在频域里可以更方便的进行一些分析。傅里叶主要针对的是平稳信号的频率特性分析,简单说就是具有一定周期性的信号,因为傅里叶变换采取的是有限取样的方式,所以对于取样长度和取样对象有着一定的要求。

2、基于Python的频谱分析
  将时域信号通过FFT转换为频域信号之后,将其各个频率分量的幅值绘制成图,可以很直观地观察信号的频谱。
   具体分析见代码注释。

import numpy as np#导入一个数据处理模块
import pylab as pl#导入一个绘图模块,matplotlib下的模块 sampling_rate = 8000#采样频率为8000Hz
fft_size = 512 #FFT处理的取样长度
t = np.arange(0, 1.0, 1.0/sampling_rate)#np.arange(起点,终点,间隔)产生1s长的取样时间
x = np.sin(2*np.pi*156.25*t) + 2*np.sin(2*np.pi*234.375*t)#两个正弦波叠加,156.25HZ和234.375HZ
# N点FFT进行精确频谱分析的要求是N个取样点包含整数个取样对象的波形。因此N点FFT能够完美计算频谱对取样对象的要求是n*Fs/N(n*采样频率/FFT长度),
# 因此对8KHZ和512点而言,完美采样对象的周期最小要求是8000/512=15.625HZ,所以156.25的n为10,234.375的n为15。
xs = x[:fft_size]# 从波形数据中取样fft_size个点进行运算
xf = np.fft.rfft(xs)/fft_size# 利用np.fft.rfft()进行FFT计算,rfft()是为了更方便对实数信号进行变换,由公式可知/fft_size为了正确显示波形能量
# rfft函数的返回值是N/2+1个复数,分别表示从0(Hz)到sampling_rate/2(Hz)的分。
#于是可以通过下面的np.linspace计算出返回值中每个下标对应的真正的频率:
freqs = np.linspace(0, sampling_rate/2, fft_size/2+1)
# np.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None)
#在指定的间隔内返回均匀间隔的数字
xfp = 20*np.log10(np.clip(np.abs(xf), 1e-20, 1e100))
#最后我们计算每个频率分量的幅值,并通过 20*np.log10()将其转换为以db单位的值。为了防止0幅值的成分造成log10无法计算,我们调用np.clip对xf的幅值进行上下限处理 #绘图显示结果
pl.figure(figsize=(8,4))
pl.subplot(211)
pl.plot(t[:fft_size], xs)
pl.xlabel(u"Time(S)")
pl.title(u"156.25Hz and 234.375Hz WaveForm And Freq")
pl.subplot(212)
pl.plot(freqs, xfp)
pl.xlabel(u"Freq(Hz)")
pl.subplots_adjust(hspace=0.4)
pl.show()

3、绘图结果显示

如果你放大其频谱中的两个峰值的部分的话,可以看到其值分别为:

>>>xfp[10]
-6.0205999132796251
>>>xfp[15]
-9.6432746655328714e-16

即156.25Hz的成分为-6dB, 而234.375Hz的成分为0dB,与波形的计算公式中的各个分量的能量(振幅值/2)符合。
---------------------
作者:赵至柔
来源:CSDN
原文:https://blog.csdn.net/qq_39516859/article/details/79794549
版权声明:本文为博主原创文章,转载请附上博文链接!

基于Python的频谱分析(一)的更多相关文章

  1. 【Machine Learning】决策树案例:基于python的商品购买能力预测系统

    决策树在商品购买能力预测案例中的算法实现 作者:白宁超 2016年12月24日22:05:42 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本 ...

  2. 基于Python+Django的Kubernetes集群管理平台

    ➠更多技术干货请戳:听云博客 时至今日,接触kubernetes也有一段时间了,而我们的大部分业务也已经稳定地运行在不同规模的kubernetes集群上,不得不说,无论是从应用部署.迭代,还是从资源调 ...

  3. 关于《selenium2自动测试实战--基于Python语言》

    关于本书的类型: 首先在我看来技术书分为两类,一类是“思想”,一类是“操作手册”. 对于思想类的书,一般作者有很多年经验积累,这类书需要细读与品位.高手读了会深有体会,豁然开朗.新手读了不止所云,甚至 ...

  4. psutil一个基于python的跨平台系统信息跟踪模块

    受益于这个模块的帮助,在这里我推荐一手. https://pythonhosted.org/psutil/#processes psutil是一个基于python的跨平台系统信息监视模块.在pytho ...

  5. 一次完整的自动化登录测试-基于python+selenium进行cnblog的自动化登录测试

    Web登录测试是很常见的测试!手动测试大家再熟悉不过了,那如何进行自动化登录测试呢!本文作者就用python+selenium结合unittest单元测试框架来进行一次简单但比较完整的cnblog自动 ...

  6. 搭建基于python +opencv+Beautifulsoup+Neurolab机器学习平台

    搭建基于python +opencv+Beautifulsoup+Neurolab机器学习平台 By 子敬叔叔 最近在学习麦好的<机器学习实践指南案例应用解析第二版>,在安装学习环境的时候 ...

  7. 《Selenium2自动化测试实战--基于Python语言》 --即将面市

    发展历程: <selenium_webdriver(python)第一版>   将本博客中的这个系列整理为pdf文档,免费. <selenium_webdriver(python)第 ...

  8. 从Theano到Lasagne:基于Python的深度学习的框架和库

    从Theano到Lasagne:基于Python的深度学习的框架和库 摘要:最近,深度神经网络以“Deep Dreams”形式在网站中如雨后春笋般出现,或是像谷歌研究原创论文中描述的那样:Incept ...

  9. 基于python的互联网软件测试开发(自动化测试)-全集合

    基于python的互联网软件测试开发(自动化测试)-全集合 1   关键字 为了便于搜索引擎收录本文,特别将本文的关键字给强调一下: python,互联网,自动化测试,测试开发,接口测试,服务测试,a ...

随机推荐

  1. 为什么我们喜欢用 sigmoid 这类 S 型非线性变换?

    本文整理自 @老师木 的一条图片新浪微博,从另一个角度给出为何采用 sigmoid 函数作非线性变换的解释. 为什么我们喜欢用 sigmoid 这类 S 型非线性变换?

  2. UFLDL 教程学习笔记(四)主成分分析

    UFLDL(Unsupervised Feature Learning and Deep Learning)Tutorial 是由 Stanford 大学的 Andrew Ng 教授及其团队编写的一套 ...

  3. Android中服务的生命周期与两种方式的区别

    服务的生命周期跟Activity的生命周期类似.但是生命周期甚至比你关注服务如何创建和销毁更重要,因为服务能够在用户不知情的情况下在后台运行. 服务的生命周期---从创建到销毁---可以被分为以下两个 ...

  4. python学习之切片

    所谓切片,其实是列表的部分元素——Python称之为切片.要创建切片,可指定要使用的第一个元素和最后一个元素的索引 . players = ['charles', 'martina', 'michae ...

  5. 这是一位拿到BAT大厂offer应届生的年终总结,那么你的呢?

    壹 关于求职 2018年初,我还在北京后厂村的马路上被风吹得瑟瑟发抖. 那时我刚刚结束了半年的实习时光,开始考虑年后是否要继续实习.一开始我也在纠结实习转正和秋招之间如何权衡,但是在经历了春招以后,我 ...

  6. 829. 连续整数求和-leetcode

    题目:给定一个正整数 N,试求有多少组连续正整数满足所有数字之和为 N? 示例 1: 输入: 5 输出: 2 解释: 5 = 5 = 2 + 3,共有两组连续整数([5],[2,3])求和后为 5. ...

  7. 音频标签化1:audioset与训练模型 | 音频特征样本

    随着机器学习的发展,很多"历史遗留"问题有了新的解决方案.这些遗留问题中,有一个是音频标签化,即如何智能地给一段音频打上标签的问题,标签包括"吉他"." ...

  8. winform 窗体关闭枚举类

    switch (e.CloseReason) { case CloseReason.None: break; case CloseReason.WindowsShutDown: break; case ...

  9. [TensorFlow] Creating Custom Estimators in TensorFlow

    Welcome to Part 3 of a blog series that introduces TensorFlow Datasets and Estimators. Part 1 focuse ...

  10. python redis模块详解

    前言  现在越来越觉得知识的沉淀尤为重要,最近打算慢慢的把一些知识点做个记录,如果长期不用生疏了也可以快速回顾.下面我会依次介绍在python中常用组件redis,rabbitmq,mongodb,E ...