传送门

大吉大利,晚上吃鸡

  新年走亲访友能干点啥呢,咱开黑吃鸡吧。

  这里有32个人,每个人都可能想玩或者不想玩,这样子一共有$2^{32}$种可能。而要开黑当然得4人4人组一队(四人模式),所以说如果想玩的人数不是4的倍数,大家就会不高兴。那么,这$2^{32}$种可能中有多少种是大家都高兴的呢?(即使没人想吃鸡也是一个大家都高兴的可能)

  由于数字较小,可以借助计算器直接算出来。

  考虑式子$(1+a)^{32}$,当a=-1时和a=1时进行二项式展开,并将2式相加可得

  $$\sum_{i=0}^{16}C_{32}^{2i}=2^{31}$$

  再考虑当a=i时和a=-i时进行二项式展开,并将两式相加可得

  $$\sum_{i=0}^{16}(-1)^i*C_{32}^{2i}=2^{16}$$

  再次相加可得

  $$\sum_{i=0}^{8}C_{32}^{4i}=2^{30}+2^{15}$$

  定位:中等题、思维题

GMA Round 1 大吉大利,晚上吃鸡的更多相关文章

  1. [BZOJ5109]大吉大利,晚上吃鸡!

    [BZOJ5109]大吉大利,晚上吃鸡! 题目大意: 一张\(n(n\le5\times10^4)\)个点\(m(m\le5\times10^4)\)条边的无向图,节点编号为\(1\)到\(n\),边 ...

  2. 【BZOJ5109】[CodePlus 2017]大吉大利,晚上吃鸡! 最短路+拓扑排序+DP

    [BZOJ5109][CodePlus 2017]大吉大利,晚上吃鸡! Description 最近<绝地求生:大逃杀>风靡全球,皮皮和毛毛也迷上了这款游戏,他们经常组队玩这款游戏.在游戏 ...

  3. bzoj5109: [CodePlus 2017]大吉大利,晚上吃鸡!

    Description 最近<绝地求生:大逃杀>风靡全球,皮皮和毛毛也迷上了这款游戏,他们经常组队玩这款游戏.在游戏中,皮皮 和毛毛最喜欢做的事情就是堵桥,每每有一个好时机都能收到不少的快 ...

  4. 「CodePlus 2017 11 月赛」大吉大利,晚上吃鸡!(dij+bitset)

    从S出发跑dij,从T出发跑dij,顺便最短路计数. 令$F(x)$为$S$到$T$最短路经过$x$的方案数,显然这个是可以用$S$到$x$的方案数乘$T$到$x$的方案数来得到. 然后第一个条件就变 ...

  5. BZOJ5109 CodePlus 2017大吉大利,晚上吃鸡!(最短路+拓扑排序+bitset)

    首先跑正反两遍dij求由起点/终点到某点的最短路条数,这样条件一就转化为f(S,A)*f(T,A)+f(S,B)*f(T,B)=f(S,T).同时建出最短路DAG,这样图中任何一条S到T的路径都是最短 ...

  6. 「CodePlus 2017 11 月赛」大吉大利,晚上吃鸡!

    n<=50000,m<=50000的图,给s和t,问有多少点对$(a,b)$满足 嗯. 不会. 首先最短路DAG造出来,然后两个条件转述一下:条件一,$N_a$表示从s到t经过a的路径,$ ...

  7. [Code+#1]大吉大利,晚上吃鸡!

    输入输出样例 输入样例#1: 7 7 1 7 1 2 2 2 4 2 4 6 2 6 7 2 1 3 2 3 5 4 5 7 2 输出样例#1: 6 输入样例#2: 5 5 1 4 1 2 1 1 3 ...

  8. [BZOJ5109/CodePlus2017]大吉大利,晚上吃鸡!

    Description 最近<绝地求生:大逃杀>风靡全球,皮皮和毛毛也迷上了这款游戏,他们经常组队玩这款游戏.在游戏中,皮皮和毛毛最喜欢做的事情就是堵桥,每每有一个好时机都能收到不少的快递 ...

  9. luogu4061 大吉大利,晚上吃鸡!

    链接 最短路径\(dag\),一道好题. 题目大意:求一张图中满足下列要求的点对\((i,j)\)数量: 所有最短路径必定会经过 \(i\) 点和 \(j\) 点中的任意一点. 不存在一条最短路同时经 ...

随机推荐

  1. java流程控制语句总结

    1.选择结构 if 方式1: 格式: if(条件表达式) { 语句体; } 执行流程: 如果条件表达式值为true, 执行语句体 如果条件表达式值为false,不执行语句体 方式2: 格式: if(条 ...

  2. JMeter上传案例2

    今天自己的QQ群里有个朋友一直在问JMeter图片上传的问题 原始通过JMeter抓包如下: 参考: http://blog.csdn.net/huashao0602/article/details/ ...

  3. TreeSet集合的自然排序与比较器排序、Comparable接口的compareTo()方法

    [自然排序] package com.hxl; public class Student implements Comparable<Student> { private String n ...

  4. 启动 ServiceFabric Windows服务报1053

    Remote Procedure Call (RPC) Locator和 Windows Firewall是否启动. 以管理员身份运行PowerShell,输入Unregister-Scheduled ...

  5. P1220 关路灯 区间dp

    题目描述 某一村庄在一条路线上安装了n盏路灯,每盏灯的功率有大有小(即同一段时间内消耗的电量有多有少).老张就住在这条路中间某一路灯旁,他有一项工作就是每天早上天亮时一盏一盏地关掉这些路灯. 为了给村 ...

  6. P1309 瑞士轮 排序选择 时间限制 归并排序

    题目背景 在双人对决的竞技性比赛,如乒乓球.羽毛球.国际象棋中,最常见的赛制是淘汰赛和循环赛.前者的特点是比赛场数少,每场都紧张刺激,但偶然性较高.后者的特点是较为公平,偶然性较低,但比赛过程往往十分 ...

  7. L3-021 神坛 (30 分) 计算几何

    在古老的迈瑞城,巍然屹立着 n 块神石.长老们商议,选取 3 块神石围成一个神坛.因为神坛的能量强度与它的面积成反比,因此神坛的面积越小越好.特殊地,如果有两块神石坐标相同,或者三块神石共线,神坛的面 ...

  8. 028 IDEA中下载与上传程序

    在学习的时候,更多的时候在使用eclipse,但是在使用过程中,IDEA有时候使用起来更加方便轻松. 关于,在使用过程中的一些常识,这里谢谢写写文档. 一:拉代码 1.说明 在第一次开始项目的时候,需 ...

  9. Python多继承之MRO算法

    MRO即Method Resolution Order   方法解析顺序,它的提出主要是为了解决Python中多继承时,当父类存在同名函数时,二义性的问题 下面先看一个例子: import inspe ...

  10. Running Median POJ - 3784 (对顶堆/优先队列 | 链表)

    For this problem, you will write a program that reads in a sequence of 32-bit signed integers. After ...