Data privacy is a major concern today for any organization that manages sensitive data or personally identifiable information (PII). Examples of such data include sensitive customer information such as phone numbers, email addresses and bank information, HR data on employees and financial business data.

This sensitive information is often stored in the database, and it should only be available to specific people on a need-to-know basis. Beyond that need, the sensitive data should not be exposed via the application, or to developers or IT personnel who access the production database directly.

Traditionally, the logic of obfuscating sensitive data has been developed in the application layer, requiring it to be duplicated across all modules and applications accessing the data. Alternatively, special views have been created to avoid exposure of these sensitive data pieces on the database itself, although these can impact database operations and are susceptible to errors. In other cases, third-party tools have been introduced to manage the concealment of the restricted data.

SQL Server 2016 and Azure SQL DB now offer a built-in feature that helps limit access to those particular sensitive data fields: Dynamic Data Masking (DDM).

DDM can be used to hide or obfuscate sensitive data, by controlling how the data appears in the output of database queries. It is implemented within the database itself, so the logic is centralized and always applies when the sensitive data is queried. Best of all, it is incredibly simple to configure DDM rules on sensitive fields, which can be done on an existing database without affecting database operations or requiring changes in application code.

How DDM works

Dynamic Data Masking rules can be defined on particular columns, indicating how the data in those columns will appear when queried. There are no physical changes to the data in the database itself; the data remains intact and is fully available to authorized users or applications. Database operations remain unaffected, and the masked data has the same data type as the original data, so DDM can often be applied without making any changes to database procedures or application code.

To add a data mask on a certain column in your database, all you need to do is alter that column by adding a mask and specifying the required masking type. Here, you can choose default masking, which fully masks out the original value, partial masking where you can specify part of the data to expose, or random masking, which replaces the numeric value with a random value within a specified range. There is also an email masking function, which exposes the first character and keeps the email format.

Full masking:

Configure masking function:

Results:

Partial masking:

Configure masking function:

Results:

You can also configure masking functions on columns at the time of table creation:

Creating a table with Dynamic Data Masking:

Enabling access to privileged users

When configuring Dynamic Data Masking rules, the underlying data is unaffected — so privileged users can still access the real data. Administrators of the database are always exempt from masking, so they will always get the real data when performing queries. You can also specify certain users that will have access to the actual data by assigning them the UNMASK permission:

Assigning the UNMASK permission:

Common questions about DDM

Does DDM apply for all database clients, like Java or Node.js? Yes, query results always contain masked data for nonprivileged users, regardless of the client used to connect to the database.

What happens if a user copies data from a masked column out of the table and into a TEMP table? In this case, the data is masked when it is retrieved from the original table — so it is written to the target table in masked format (unless a privileged user is retrieving it). This means that the original data cannot be restored from the TEMP table. This ensures that users who do not have access to unmasked data cannot expose the real data by copying it elsewhere. Note: To avoid data corruption, be sure to assign database read/write permissions appropriately.

What is the performance impact of using DDM? Since the data masking is performed only at the end of the database query operation, right before the data is returned, the performance impact is minimal and often negligible. You should still validate the exact performance impact for your workload.

https://blogs.technet.microsoft.com/dataplatforminsider/2016/01/25/use-dynamic-data-masking-to-obfuscate-your-sensitive-data/

Part of a comprehensive security solution

Note that Dynamic Data Masking is not a replacement for access control mechanisms, and is not a method for physical data encryption. DDM is intended to simplify the obfuscation of sensitive data by centralizing the logic in your database, but it does not provide complete protection against malicious administrators running exhaustive ad-hoc queries. Dynamic Data Masking is complementary to other SQL Server security features (auditing, encryption, Row-Level Security, etc.) and it is highly recommended to use it in conjunction with them to better protect your sensitive data in the database.

Getting started

You can get started immediately with Dynamic Data Masking to restrict users from seeing sensitive information in your database. All you need to do is identify the sensitive columns in your database and configure data masking for those columns, specifying how much of the data to reveal.

You can learn more about Dynamic Data Masking for SQL Server and for Azure SQL database with the following resources:

See the other posts in the SQL Server 2016 blogging series.

Use Dynamic Data Masking to obfuscate your sensitive data的更多相关文章

  1. Microsoft: Get started with Dynamic Data Masking in SQL Server 2016 and Azure SQL

    Dynamic Data Masking (DDM) is a new security feature in Microsoft SQL Server 2016 and Azure SQL DB. ...

  2. SQL Server 2016 的「動態資料遮罩 (Dynamic Data Masking)」

    一些特別注重資訊安全.個人資料的公司或產業 (如: 金融.保險業),通常「測試用資料庫」的資料,會加上「遮蔽:去識別化」的功能,避免個資外洩.以往必須自己撰寫 SQL 語句或 Stored Proce ...

  3. Azure SQL Database (23) Azure SQL Database Dynamic Data Masking动态数据掩码

    <Windows Azure Platform 系列文章目录> 我们在使用关系型数据的时候,有时候希望: - 管理员admin,可以查看到所有的数据 - 普通用户,某些敏感字段,比如信用卡 ...

  4. SQL Server ->> SQL Server 2016新特性之 -- Dynamic Data Masking

    Dynamic Data Masking是为了防止敏感数据暴露给未经授权的用户,以一种最小开销和维护成本的形式.Dynamic Data Masking用于表的字段,相当于盖住字段数据的一部分.比如一 ...

  5. 数据访问安全--数据库遮罩及断词 Data Masking & Tokenization

    现在大数据时代几乎无隐私,各政府部门各公司都要求实名制(动不动手机认证,身份证号码认证),但又无力确保数据安全,称为乱象. 其实在2011年,我们就接触过数据库遮罩断词产品,一个澳大利亚公司产品. 简 ...

  6. Big Data Analytics for Security(Big Data Analytics for Security Intelligence)

    http://www.infoq.com/articles/bigdata-analytics-for-security This article first appeared in the IEEE ...

  7. SSIS Data Flow 的 Execution Tree 和 Data Pipeline

    一,Execution Tree 执行树是数据流组件(转换和适配器)基于同步关系所建立的逻辑分组,每一个分组都是一个执行树的开始和结束,也可以将执行树理解为一个缓冲区的开始和结束,即缓冲区的整个生命周 ...

  8. Data Being Added Conflicts with Existing Data

    While developing a page with multiple scrolls levels, and especially when using a grid, you may get ...

  9. Competing in a data science contest without reading the data

    Competing in a data science contest without reading the data Machine learning competitions have beco ...

随机推荐

  1. java多线程之守护线程(Daemon)

    https://blog.csdn.net/u010739551/article/details/51065923/

  2. Java基础中的RMI介绍与使用

    今天在这边介绍一下Java基础中的rmi使用.其实rmi有什么样的使用场景呢?它跟webservice有什么区别呢?其实webservice主要是可以跨语言实现项目间的方法调用,而rmi只是java内 ...

  3. SpringBoot整合mongoDB

    MongoDB 是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的. 这一片文章介绍一个springboot整合mongodb,如果你了解整合mysql之类的 ...

  4. OI常用重载运算符

    用STL时经常用到 PS:这里有个巨坑,把重载写在STL里常数会爆炸,分分钟大数据TLE 所以就把重载放在结构体里啦 //以priority_queue的重载为例 //priority_queue默认 ...

  5. JavaScript基础笔记(一)基本概念

    基本概念 一.语法 一)区分大小写 二)标识符 书写规则同Java 三)注释 略 四)严格模式 1.在整个脚本中启用严格模式:在顶部添加 "use strict" 2.指定函数在严 ...

  6. [USACO18DEC]The Cow Gathering

    Description: 给定一棵树,每次删去叶子,有m个限制,分别为(a,b)表示a需要比b先删,为每个点能否成为最后被删的点 Hint: \(n,m \le 10^5\) Solution: 手模 ...

  7. phtnon 文件操作

    1.文件定义 (1).什么是文件? 文件是操作系统为用户或者应用程序提供一个读写硬盘的虚拟单位 文件的核心就是读写,即我们只需要对于进行读写操作,就是对操作系统发起请求,然后由操作系统将用户或者应用程 ...

  8. (转)JavaWeb学习之Servlet(三)----Servlet的映射匹配问题、线程安全问题

    [声明] 欢迎转载,但请保留文章原始出处→_→ 文章来源:http://www.cnblogs.com/smyhvae/p/4140529.html 一.Servlet映射匹配问题: 在第一篇文章中的 ...

  9. dd制作linux启动盘

    1.fdisk /dev/sdb 删除分区,新建分区 2.mkfs.vfat /dev/sdb1 3.dd bs=4M if=CentOS.iso of=/dev/sdb

  10. Android @id和@+id区别

    Android中的组件需要用一个int类型的id属性值来表示.id属性只能接受资源类型的值,也就是必须以@开头的值,例如,@id/abc.@+id/xyz等.如果在@后面使用“+”,表示当修改完某个布 ...