洛谷P4072 [SDOI2016]征途(带权二分,斜率优化)
一开始肯定要把题目要求的式子给写出来
我们知道方差的公式\(s^2=\frac{\sum\limits_{i=1}^{m}(x_i-\overline x)^2}{m}\)
题目要乘\(m^2\)再输出,于是
\(m^2s^2=m\sum\limits_{i=1}^{m}(x_i-\overline x)^2\)
\(=m(\sum\limits_{i=1}^{m}x_i^2-2\overline{x}\sum\limits_{i=1}^{m}x_i+m\overline{x}^2)\)
\(=m\sum\limits_{i=1}^{m}x_i^2-(\sum\limits_{i=1}^{m}x_i)^2\)
于是只要最小化\(\sum\limits_{i=1}^{m}x_i^2\)即可。
然而选\(m\)段非常不好办。这时候可以联想到凸优化。设\(G_m\)表示选\(m\)段\(\sum\limits_{i=1}^{m}x_i^2\)的最小值,当\(m\)增大的时候\(G_m\)显然会减小,凭蒟蒻的感性理解,多分出一段对答案的影响幅度也越来越小,也就是说\(G_x\)关于\(x\)的函数图像大概是下凸的。
我们用一个斜率为\(mid\)的直线去切这个凸包。显然\(mid\)的下界取\([0,1]\)之间的斜率,是总路程平方级别的,上界是\(0\)。因为切线在凸包的下方,所以多选一段的代价不是\(+mid\)而是\(-mid\)。
update:蒟蒻弃用了用直线切凸包的理解方法,蒟蒻用导数思想理解DP凸优化的思路可以看这里
接下来就是斜率优化的过程。设\(f_i\)为前\(i\)条路的最优答案,\(x_i\)为路程长度的前缀和,写出转移方程
\(f_i=\min\limits_{j=0}^{i}\{f_j-2x_ix_j+x_j^2\}+x_i^2\)
决策\(j\)优于\(k\)当且仅当
\(f_j-2x_ix_j+x_j^2<f_k-2x_ix_k+x_k^2\)
\(\frac{f_j+x_j^2-f_k-x_k^2}{x_j-x_k}<2x_i\)
于是设\(y_i=f_i+x_i^2\),把决策看成点\((x_i,y_i)\),使用单调队列就OK了。注意这里要记\(c_i\)表示最优决策下将前\(i\)条路分出的段数。最后判断\(c_n\)与\(m\)的关系来调整斜率。
由于这一题的斜率肯定不会有小数,故也不必担心二分中的一些边界问题。
#include<cstdio>
#define RG register
#define R RG int
#define G c=getchar()
#define Calc(j,k) (y[j]-y[k])/(x[j]-x[k])
typedef long long LL;
const int N=3009;
int n,q[N],c[N];
double f[N],k[N],x[N],y[N];
inline int in(){
RG char G;
while(c<'-')G;
R x=c&15;G;
while(c>'-')x=x*10+(c&15),G;
return x;
}
inline double sqr(RG double x){
return x*x;
}
inline void work(R mid){//斜率优化
R h,t,i;
for(h=t=i=1;i<=n;++i){
while(h<t&&k[h]<2*x[i])++h;
f[i]=f[q[h]]+sqr(x[i]-x[q[h]])-mid;//每转移一次要减一下mid
y[i]=f[i]+sqr(x[i]);
c[i]=c[q[h]]+1;//记录段数
while(h<t&&k[t-1]>Calc(q[t],i))--t;
k[t]=Calc(q[t],i);q[++t]=i;
}
}
int main(){
n=in();R m=in(),l,r,mid,i;
for(i=1;i<=n;++i)x[i]=x[i-1]+in();
l=-sqr(x[n]);r=0;//大致确定下界
while(l<r){
work(mid=(l+r+1)/2);//注意负数的下取整问题
c[n]<=m?l=mid:r=mid-1;
}
work(l);
printf("%.0lf\n",m*(f[n]+m*l)-sqr(x[n]));//先加回m*l
return 0;
}
洛谷P4072 [SDOI2016]征途(带权二分,斜率优化)的更多相关文章
- 洛谷 P4072 [SDOI2016]征途 斜率优化DP
洛谷 P4072 [SDOI2016]征途 斜率优化DP 题目描述 \(Pine\) 开始了从 \(S\) 地到 \(T\) 地的征途. 从\(S\)地到\(T\)地的路可以划分成 \(n\) 段,相 ...
- 6.13校内互测 (DP 带权二分 斜率优化)
丘中有麻plant 改自这儿,by ZBQ. 还有隐藏的一页不放了.. 直接走下去的话,如果开始时间确定那么到每个点的时间确定,把time减去dis就可以去掉路程的影响了. 这样对于减去d后的t,如果 ...
- [洛谷P4072] SDOI2016 征途
问题描述 Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地.除第m天外,每一天晚上Pine都必须在休息站过夜.所以,一段路 ...
- 洛谷P4072 [SDOI2016]征途(斜率优化)
传送门 推式子(快哭了……)$$s^2*m^2=\sum _{i=1}^m (x_i-\bar{x})^2$$ $$s^2*m^2=m*\sum _{i=1}^m x_i^2-2*sum_n\sum ...
- 洛谷 P2024 [NOI2001]食物链——带权值的并查集维护
先上一波题目 https://www.luogu.org/problem/P2024 通过这道题复习了一波并查集,学习了一波带权值操作 首先我们观察到 所有的环都是以A->B->C-> ...
- 洛谷P1196 银河英雄传说[带权并查集]
题目描述 公元五八○一年,地球居民迁移至金牛座α第二行星,在那里发表银河联邦 创立宣言,同年改元为宇宙历元年,并开始向银河系深处拓展. 宇宙历七九九年,银河系的两大军事集团在巴米利恩星域爆发战争.泰山 ...
- 洛谷4072 SDOI2016征途 (斜率优化+dp)
首先根据题目中给的要求,推一下方差的柿子. \[v\times m^2 = m\times \sum x^2 - 2 \times sum \times sum +sum*sum \] 所以\(ans ...
- 【洛谷 P2120】 [ZJOI2007]仓库建设(斜率优化)
题目链接 斜率优化+1,好吧不水分了. 玩具装箱那题以后再做,当作复习吧. \(f[i]=f[j]-(sum[i]-sum[j])*dis[i]+p[i]\) \(f[j]=-dis[i]*sum[j ...
- 【洛谷 P3648】 [APIO2014]序列分割 (斜率优化)
题目链接 假设有\(3\)段\(a,b,c\) 先切\(ab\)和先切\(bc\)的价值分别为 \(a(b+c)+bc=ab+bc+ac\) \((a+b)c+ab=ab+bc+ac\) 归纳一下可以 ...
随机推荐
- thymeleaf参考手册
1.创建 html <!DOCTYPE html><html xmlns:th="http://www.thymeleaf.org"></html&g ...
- 从harbor部署到在k8s中使用
一.概述 harbor是什么呢?英文单词的意思是:港湾.港湾用来存放集装箱(货物的),而docker的由来正是借鉴了集装箱的原理,所以harbor是用于存放docker的镜像,作为镜像仓库使用.官方的 ...
- 在VS2017上使用C#调用非托管C++生成的DLL文件(图文讲解)
原文:在VS2010上使用C#调用非托管C++生成的DLL文件(图文讲解) 背景 在项目过程中,有时候你需要调用非C#编写的DLL文件,尤其在使用一些第三方通讯组件的时候,通过C#来开发应用软件时,就 ...
- [Oracle]如何观察Table 的各种Lock 之间的冲突
[Oracle]如何观察Table 的各种Lock 之间的冲突 举例: Session#15 创建表: SID 15==============create table t1 (c1 number)p ...
- Intel x86_64 Architecture Background 3
多层次的cache结构解决了CPU和DRAM之间处理速度不一致的问题,在Intel体系架构下,CPU核心和主存DRAM之间有着三层的cache.其中一层缓存L1和二层缓存L2在CPU核心(core)中 ...
- NIO之缓冲区
NIO引入了三个概念: Buffer 缓冲区 Channel 通道 selector 选择器 1.java.io优化建议 操作系统与Java基于流的I/O模型有些不匹配.操作系统要移动的是大块数据(缓 ...
- CentOS 7.2:Failed to start IPv4 firewall with iptables
问题 系统是centos7.2,且已经安装了iptables服务,但是在执行启动命令后,却报了iptables服务无法正常启动的错误. 启动命令如下: systemctl start iptables ...
- 初级Java工程师面试所遇面试题
1.servlet的生命周期 : 一.百度百科 : 1.客户端请求servlet: 2.加载servlet类到内存: 3.实例化并调用init()方法初始化servlet: 4.调用service() ...
- ELK实时日志分析平台环境部署--完整记录
在日常运维工作中,对于系统和业务日志的处理尤为重要.今天,在这里分享一下自己部署的ELK(+Redis)-开源实时日志分析平台的记录过程(仅依据本人的实际操作为例说明,如有误述,敬请指出)~ ==== ...
- 12.14 Daily Scrum
Today's Task Tomorrow's Task 丁辛 实现和菜谱相关的餐厅列表. 实现和菜谱相关的餐厅列表. 邓亚梅 美化搜索框UI. 美 ...