洛谷P4072 [SDOI2016]征途(带权二分,斜率优化)
一开始肯定要把题目要求的式子给写出来
我们知道方差的公式\(s^2=\frac{\sum\limits_{i=1}^{m}(x_i-\overline x)^2}{m}\)
题目要乘\(m^2\)再输出,于是
\(m^2s^2=m\sum\limits_{i=1}^{m}(x_i-\overline x)^2\)
\(=m(\sum\limits_{i=1}^{m}x_i^2-2\overline{x}\sum\limits_{i=1}^{m}x_i+m\overline{x}^2)\)
\(=m\sum\limits_{i=1}^{m}x_i^2-(\sum\limits_{i=1}^{m}x_i)^2\)
于是只要最小化\(\sum\limits_{i=1}^{m}x_i^2\)即可。
然而选\(m\)段非常不好办。这时候可以联想到凸优化。设\(G_m\)表示选\(m\)段\(\sum\limits_{i=1}^{m}x_i^2\)的最小值,当\(m\)增大的时候\(G_m\)显然会减小,凭蒟蒻的感性理解,多分出一段对答案的影响幅度也越来越小,也就是说\(G_x\)关于\(x\)的函数图像大概是下凸的。
我们用一个斜率为\(mid\)的直线去切这个凸包。显然\(mid\)的下界取\([0,1]\)之间的斜率,是总路程平方级别的,上界是\(0\)。因为切线在凸包的下方,所以多选一段的代价不是\(+mid\)而是\(-mid\)。
update:蒟蒻弃用了用直线切凸包的理解方法,蒟蒻用导数思想理解DP凸优化的思路可以看这里
接下来就是斜率优化的过程。设\(f_i\)为前\(i\)条路的最优答案,\(x_i\)为路程长度的前缀和,写出转移方程
\(f_i=\min\limits_{j=0}^{i}\{f_j-2x_ix_j+x_j^2\}+x_i^2\)
决策\(j\)优于\(k\)当且仅当
\(f_j-2x_ix_j+x_j^2<f_k-2x_ix_k+x_k^2\)
\(\frac{f_j+x_j^2-f_k-x_k^2}{x_j-x_k}<2x_i\)
于是设\(y_i=f_i+x_i^2\),把决策看成点\((x_i,y_i)\),使用单调队列就OK了。注意这里要记\(c_i\)表示最优决策下将前\(i\)条路分出的段数。最后判断\(c_n\)与\(m\)的关系来调整斜率。
由于这一题的斜率肯定不会有小数,故也不必担心二分中的一些边界问题。
#include<cstdio>
#define RG register
#define R RG int
#define G c=getchar()
#define Calc(j,k) (y[j]-y[k])/(x[j]-x[k])
typedef long long LL;
const int N=3009;
int n,q[N],c[N];
double f[N],k[N],x[N],y[N];
inline int in(){
RG char G;
while(c<'-')G;
R x=c&15;G;
while(c>'-')x=x*10+(c&15),G;
return x;
}
inline double sqr(RG double x){
return x*x;
}
inline void work(R mid){//斜率优化
R h,t,i;
for(h=t=i=1;i<=n;++i){
while(h<t&&k[h]<2*x[i])++h;
f[i]=f[q[h]]+sqr(x[i]-x[q[h]])-mid;//每转移一次要减一下mid
y[i]=f[i]+sqr(x[i]);
c[i]=c[q[h]]+1;//记录段数
while(h<t&&k[t-1]>Calc(q[t],i))--t;
k[t]=Calc(q[t],i);q[++t]=i;
}
}
int main(){
n=in();R m=in(),l,r,mid,i;
for(i=1;i<=n;++i)x[i]=x[i-1]+in();
l=-sqr(x[n]);r=0;//大致确定下界
while(l<r){
work(mid=(l+r+1)/2);//注意负数的下取整问题
c[n]<=m?l=mid:r=mid-1;
}
work(l);
printf("%.0lf\n",m*(f[n]+m*l)-sqr(x[n]));//先加回m*l
return 0;
}
洛谷P4072 [SDOI2016]征途(带权二分,斜率优化)的更多相关文章
- 洛谷 P4072 [SDOI2016]征途 斜率优化DP
洛谷 P4072 [SDOI2016]征途 斜率优化DP 题目描述 \(Pine\) 开始了从 \(S\) 地到 \(T\) 地的征途. 从\(S\)地到\(T\)地的路可以划分成 \(n\) 段,相 ...
- 6.13校内互测 (DP 带权二分 斜率优化)
丘中有麻plant 改自这儿,by ZBQ. 还有隐藏的一页不放了.. 直接走下去的话,如果开始时间确定那么到每个点的时间确定,把time减去dis就可以去掉路程的影响了. 这样对于减去d后的t,如果 ...
- [洛谷P4072] SDOI2016 征途
问题描述 Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地.除第m天外,每一天晚上Pine都必须在休息站过夜.所以,一段路 ...
- 洛谷P4072 [SDOI2016]征途(斜率优化)
传送门 推式子(快哭了……)$$s^2*m^2=\sum _{i=1}^m (x_i-\bar{x})^2$$ $$s^2*m^2=m*\sum _{i=1}^m x_i^2-2*sum_n\sum ...
- 洛谷 P2024 [NOI2001]食物链——带权值的并查集维护
先上一波题目 https://www.luogu.org/problem/P2024 通过这道题复习了一波并查集,学习了一波带权值操作 首先我们观察到 所有的环都是以A->B->C-> ...
- 洛谷P1196 银河英雄传说[带权并查集]
题目描述 公元五八○一年,地球居民迁移至金牛座α第二行星,在那里发表银河联邦 创立宣言,同年改元为宇宙历元年,并开始向银河系深处拓展. 宇宙历七九九年,银河系的两大军事集团在巴米利恩星域爆发战争.泰山 ...
- 洛谷4072 SDOI2016征途 (斜率优化+dp)
首先根据题目中给的要求,推一下方差的柿子. \[v\times m^2 = m\times \sum x^2 - 2 \times sum \times sum +sum*sum \] 所以\(ans ...
- 【洛谷 P2120】 [ZJOI2007]仓库建设(斜率优化)
题目链接 斜率优化+1,好吧不水分了. 玩具装箱那题以后再做,当作复习吧. \(f[i]=f[j]-(sum[i]-sum[j])*dis[i]+p[i]\) \(f[j]=-dis[i]*sum[j ...
- 【洛谷 P3648】 [APIO2014]序列分割 (斜率优化)
题目链接 假设有\(3\)段\(a,b,c\) 先切\(ab\)和先切\(bc\)的价值分别为 \(a(b+c)+bc=ab+bc+ac\) \((a+b)c+ab=ab+bc+ac\) 归纳一下可以 ...
随机推荐
- JQuery加载html网页
在ASP.NET MVC环境中,使用jQuery脚本去实现加载html网页. 一般情况之下,在ASP.NET MVC项目中,你不能在~/Views目录之下添加或是创建任何html为后缀的网页.但这也不 ...
- JavaScript 格式化数字 - 转
function number_format(number, decimals, dec_point, thousands_sep,roundtag) { /* * 参数说明: * number:要格 ...
- .NET CORE下的Cache
.NET CORE 下的缓存跟之前ASP.NET下的缓存有所不同,应用.NET CORE缓存首先需要引入Microsoft.Extensions.Caching.Memory程序包 下面简单写了一个C ...
- CentOS搭建V~P~N服务,实现虚拟专用网络
什么是V-P-N V-P-N即虚拟专用网络,它的功能是:在公用网络上建立专用网络,进行加密通讯. V-P-N网关通过对数据包的加密和数据包目标地址的转换实现远程访问.V-P-N有多种分类方式,主要是按 ...
- proxy_pass反向代理配置中url后面加不加/的说明
在日常的web网站部署中,经常会用到nginx的proxy_pass反向代理,有一个配置需要弄清楚:配置proxy_pass时,当在后面的url加上了/,相当于是绝对根路径,则nginx不会把loca ...
- 北航学堂Android客户端Beta阶段发布说明
在从学姐那里拿到服务接口的代码最终连通服务器之后,经过我们团队的努力,终于把前后端融合生成了我们目前的版本, 因为我们在Alpha阶段网络连接部分是一直没有搞定的,所以这个版本其实并不算是真正的Bet ...
- 《linux内核设计与实现》第五章
第五章 系统调用 一.与内核通信 系统调用在用户空间进程和硬件设备之间添加了一个中间层.作用: 为用户空间提供了一种硬件的抽象接口. 系统调用保证了系统的稳定和安全. 每个进程都运行在虚拟系统中,而在 ...
- Balanced Ternary String CodeForces - 1102D (贪心+思维)
You are given a string ss consisting of exactly nn characters, and each character is either '0', '1' ...
- 微信小程序动态数据跑马灯组件编写
开发必备:熟悉微信小程序组件开发 开发思路:如果只有一条数据,直接用css3关键帧动画:如果有多条数据,则在当前动画运动到一定时间的时候,将其数据替换掉,使之在视觉效果上有一个从下到上播放的状态.数组 ...
- ubuntu16.04下载安装navicate
1.下载试用版本地址: https://www.navicat.com.cn/download/navicat-premium 2.解压缩 tar -zxvf /home/rain/download ...