POJ P3352 Road Construction 解题报告
P3352 Road Construction
描述
这几乎是夏季,这意味着它几乎是夏季施工时间!今年,负责岛屿热带岛屿天堂道路的优秀人士,希望修复和升级岛上各个旅游景点之间的各种道路。
道路本身也很有趣。由于岛上奇特的风俗习惯,道路的布置使得它们不会在十字路口相遇,而是通过桥梁和隧道在彼此之间穿过或穿过。这样,每条道路都在两个特定的旅游景点之间运行,这样游客不会失去不可挽回的收入。
不幸的是,鉴于每条道路上所需的维修和升级的性质,当建筑公司在特定的道路上工作时,它在任何方向都不可用。如果不能在两个旅游景点之间旅行,即使建筑公司在任何特定时间只在一条道路上工作,这也可能导致问题。
因此,偏远岛道路部已决定请求您的咨询服务来帮助解决这个问题。已经决定在各个景点之间建造新的道路,使得在最终配置中,如果任何一条道路正在建设中,则仍有可能使用剩余道路在任何两个旅游景点之间旅行。你的任务是找到必要的最少数量的新道路。
输入
第一行输入由正整数\(n\)和\(r\)组成,用空格隔开,其中\(3≤n≤1000\)是岛上旅游景点的数量,\(2≤r≤1000\)是道路数量。旅游景点可方便地标记为1至\(n\)。下列\(r\)行中的每一行都由两个整数组成,\(v\)和\(w\)之间用空格隔开,表示标记为\(v\)和\(w\)的景点之间存在道路。请注意,您可以沿着每条道路向两个方向行驶,任何一对旅游景点最多只能有一条道路在它们之间。此外,您可以放心,在目前的配置中,可以在任何两个旅游景点之间旅行。
输出
一行,由一个整数组成,它给出我们需要添加的最少道路数量。
谷歌翻译的。海星。
题目简化:对于一个联通图,加最少的边使图成为一个边双联通图。
可以看出,对于环上的任何一条边,割去都是没有影响的,我们可以先缩点,将图缩成一个树。然后对树做讨论。
对树中度为1的点,我们一定要把这个点再连一个边,此时用贪心的思想,同样使它连接其他度为1的点。对于度不为1的点,我们割去任何一条与它相连的边后它都可以通过度为1的点新连得边跑走。所以答案为\(\lceil d/2 \rceil\)。
在做法上,也可以不缩点做,甚至是思想上。
在题目HNOI2012 矿场搭建中,我们用了这样的思想。
讨论每一个联通块中由割点相连接的若干个强连通分量(等效为去掉割点),讨论这个强连通分量与多少个割点相连做出决策。
对于这个题,我们可以考虑与割边相连的环。
若一个环与一个割边相连,则割去这个边后不能与其他的联通,得连走一条,等效为缩点后度为1的点。
若一个环与多个割边相连,无所谓啊。
【拓展】由此我们也可以由割边在无向图找环了。
这样写起来也比较简单了。
code:
#include <cstdio>
int min(int x,int y){return x<y?x:y;}
const int N=1010;
struct Edge
{
int to,next;
}edge[N<<1];
int head[N],cnt=1,cntt=0,n,m;
void add(int u,int v)
{
edge[++cnt].next=head[u];edge[cnt].to=v;head[u]=cnt;
}
int time=0,low[N],dfn[N],ans=0,c[N],is[N],used[N];
void tarjan(int now,int fa)
{
low[now]=dfn[now]=++time;
for(int i=head[now];i;i=edge[i].next)
{
int v=edge[i].to;
if(!dfn[v])
{
tarjan(v,now);
low[now]=min(low[v],low[now]);
if(low[v]>dfn[now])
is[i]=1,is[i^1]=1;
}
else if(fa!=v)
low[now]=min(low[now],dfn[v]);
}
}
void dfs(int now)
{
used[now]=1;
for(int i=head[now];i;i=edge[i].next)
{
int v=edge[i].to;
if(is[i])
cntt++;
else if(!used[v])
dfs(v);
}
}
int main()
{
scanf("%d%d",&n,&m);
int u,v;
for(int i=1;i<=m;i++)
{
scanf("%d%d",&u,&v);
add(u,v),add(v,u);
}
for(int i=1;i<=n;i++)
tarjan(i,0);
for(int i=1;i<=n;i++)
if(!used[i])
{
cntt=0;
dfs(i);
if(cntt==1) ans++;
}
printf("%d\n",ans+1>>1);
return 0;
}
2018.6.9
POJ P3352 Road Construction 解题报告的更多相关文章
- Tarjan算法求解桥和边双连通分量(附POJ 3352 Road Construction解题报告)
http://blog.csdn.net/geniusluzh/article/details/6619575 在说Tarjan算法解决桥和边双连通分量问题之前我们先来回顾一下Tarjan算法是如何 ...
- POJ 3177 Redundant Paths POJ 3352 Road Construction(双连接)
POJ 3177 Redundant Paths POJ 3352 Road Construction 题目链接 题意:两题一样的.一份代码能交.给定一个连通无向图,问加几条边能使得图变成一个双连通图 ...
- POJ 3126 Prime Path 解题报告(BFS & 双向BFS)
题目大意:给定一个4位素数,一个目标4位素数.每次变换一位,保证变换后依然是素数,求变换到目标素数的最小步数. 解题报告:直接用最短路. 枚举1000-10000所有素数,如果素数A交换一位可以得到素 ...
- poj 3352 Road Construction【边双连通求最少加多少条边使图双连通&&缩点】
Road Construction Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 10141 Accepted: 503 ...
- 【原创】poj ----- 2376 Cleaning Shifts 解题报告
题目地址: http://poj.org/problem?id=2376 题目内容: Cleaning Shifts Time Limit: 1000MS Memory Limit: 65536K ...
- 【原创】poj ----- 1611 The Suspects 解题报告
题目地址: http://poj.org/problem?id=1611 题目内容: The Suspects Time Limit: 1000MS Memory Limit: 20000K To ...
- 【原创】poj ----- 2524 Ubiquitous Religions 解题报告
题目地址: http://poj.org/problem?id=2524 题目内容: Ubiquitous Religions Time Limit: 5000MS Memory Limit: 6 ...
- POJ 3177 Redundant Paths & POJ 3352 Road Construction(双连通分量)
Description In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numb ...
- [POJ 1002] 487-3279 C++解题报告
487-3279 Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 228365 Accepted: 39826 D ...
随机推荐
- C# 泛型分组和Linq分组的异同
没什么好说的,因为用的到,所以作个记录, 代码如下: using System; using System.Collections.Generic; using System.Linq; using ...
- Python 学习 第一篇:数据类型(数字,集合,布尔类型,操作符)
Python语言最常用的对象是变量和常量,常量的值是字面意思,其值是不可变的,变量的值是可变的,例如,123,"上海"是常量,而a=1,a=2,其中a是变量名.内置的核心数据类型有 ...
- 线程池ThreadPoolExecutor整理
项目用到线程池,但是其实很多人对原理并不熟悉 ,这里只是整理一下 ThreadPoolExecutor java.uitl.concurrent.ThreadPoolExecutor类是线程池中最核心 ...
- FFMPEG指令
FFmpeg是一个用于音视频处理的自由软件,被广泛用于音视频开发.FFmpeg功能强大,本文主要介绍如何使用FFmpeg命令行工具进行简单的视频处理. 安装FFmpeg可以在官网下载各平台软件包或者静 ...
- TDD、BDD、ATDD、DDD 软件开发模式
TDD.BDD.ATDD.DDD 软件开发模式 四个开发模式意思: TDD:测试驱动开发(Test-Driven Development) BDD:行为驱动开发(Behavior Driven Dev ...
- bootstrap完善按钮组bug
.btn.active { border: 1px solid #ff9400 !important; color: #ff9400 !important; } <div class=" ...
- Kruskal算法-HDU1863畅通工程
链接 [http://acm.hdu.edu.cn/showproblem.php?pid=1863] 题意 Problem Description 省政府"畅通工程"的目标是使全 ...
- week3个人作业
一.必应词典的bug 必应词典占用资源过多,作为后台软件,必应词典的内存占用是其他的四五倍 适应能力弱,经常与其他软件冲突,兼容性差 二.分析 根据我的分析,团队人数6人左右,计算机大学毕业生,并有专 ...
- Oracle系列(二): Oracle表的外键查询
在执行数据库删除操作时,外键关联是令我们最烦的一个东西,有了外键关联,就不允许随意删除数据,那么怎知道这个外键关联度的外键属于那个表? select * from user_cons_columns ...
- Quartz中时间表达式的设置-----corn表达式 (转)(http://www.cnblogs.com/GarfieldTom/p/3746290.html)
Quartz中时间表达式的设置-----corn表达式 (注:这是让我看比较明白的一个博文,但是抱歉,没有找到原作者,如有侵犯,请告知) 时间格式: <!-- s m h d m w(?) y( ...