MT【20】一道三次函数的难题

评:这道题由于系数弄得不是很好,涉及的难度为联赛一试+难度。中间用到了$Sturm$定理,还涉及到一些代
数变形技巧,最后一个求关于$m$的三次方程又涉及到三次方程的求法.一个小时讲这一道题也不为过.
MT【20】一道三次函数的难题的更多相关文章
- MT【136】一道三次函数的最佳逼近问题
已知函数\(f(x)=-x^3-3x^2+(1+a)x+b(a<0,b\in R)\), 若\(|f(x)|\)在\([-2,0]\)上的最大值为\(M(a,b)\),求\(M(a,b)\)的最 ...
- MT【81】含参数三次函数因式分解
解答: 评:这题实质上是对关于$x$的三次函数进行了一个因式分解.这种把$a$看成主元的技巧是初中处理高次的因式分解的常用技巧.如果用三次求导去做计算量比较大,要计算极值.
- ES6学习笔记<三> 生成器函数与yield
为什么要把这个内容拿出来单独做一篇学习笔记? 生成器函数比较重要,相对不是很容易理解,单独做一篇笔记详细聊一聊生成器函数. 标题为什么是生成器函数与yield? 生成器函数类似其他服务器端语音中的接口 ...
- 动态载入DLL所需要的三个函数详解(LoadLibrary,GetProcAddress,FreeLibrary)
动态载入 DLL 动态载入方式是指在编译之前并不知道将会调用哪些 DLL 函数, 完全是在运行过程中根据需要决定应调用哪些函数. 方法是:用 LoadLibrary 函数加载动态链接库到内存,用 Ge ...
- [洛谷U62364]三次函数极值
U62364 三次函数极值 题面 给定一个三次函数\(f(x)=a_3x^3+a_2x^2+a_1x+a_0\) 求其极值. 格式 输入包括一行四个整数\(a_3,a_2,a_1,a_0\) 输出包括 ...
- 【转载】动态载入DLL所需要的三个函数详解(LoadLibrary,GetProcAddress,FreeLibrary)
原文地址:https://www.cnblogs.com/westsoft/p/5936092.html 动态载入 DLL 动态载入方式是指在编译之前并不知道将会调用哪些 DLL 函数, 完全是在运行 ...
- win系统动态载入DLL所需要的三个函数详解(LoadLibrary,GetProcAddress,FreeLibrary)
动态载入 DLL 动态载入方式是指在编译之前并不知道将会调用哪些 DLL 函数, 完全是在运行过程中根据需要决定应调用哪些函数. 方法是:用 LoadLibrary 函数加载动态链接库到内存,用 Ge ...
- 面试官:能解释一下javascript中bind、apply和call这三个函数的用法吗
一.前言 不知道大家还记不记得前几篇的文章:<面试官:能解释一下javascript中的this吗> 那今天这篇文章虽然是介绍javascript中bind.apply和call函数 ...
- 【NX二次开发】获取对象边界包容盒的三个函数UF_MODL_ask_bounding_box
今天看到胡工对bounding_box的分享,我也来测试一番(原帖地址:https://www.ugapi.com/thread-10287.html) 获取对象的边界盒子的三个函数: 1 UF_MO ...
随机推荐
- Mac安装LNMP环境,升级php7
Mac安装nginx+mysql+php 安装nginx比较麻烦,要安装pcre ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre ...
- Python开发技巧
1 python关闭windows进程 python关闭windows进程的方法,涉及Python调用系统命令操作windows进程的技巧 import os command = 'taskkill ...
- BZOJ1185 HNOI2007 最小矩形覆盖 凸包、旋转卡壳
传送门 首先,肯定只有凸包上的点会限制这个矩形,所以建立凸包. 然后可以知道,矩形上一定有一条边与凸包上的边重合,否则可以转一下使得它重合,答案会更小. 于是沿着凸包枚举这一条边,通过旋转卡壳找到离这 ...
- java,javascript中的url编码
真实场景 url示例如下 http://localhost:31956/Login/Auto?Token=e8a67a9f-c062-4964-b703-d79f29c8b64e&Return ...
- Linux下安装解压版(tar.gz)MySQL5.7
最近尝试在Linux中安装了解压版MySQL,期间查阅了许多博客.很多博客看得我很懵逼,因此记录下自己的安装过程,方便后续查阅. 环境说明:CentOs7.2 一.清理 ...
- IO复用\阻塞IO\非阻塞IO\同步IO\异步IO
转载:IO复用\阻塞IO\非阻塞IO\同步IO\异步IO 一. 什么是IO复用? 它是内核提供的一种同时监控多个文件描述符状态改变的一种能力:例如当进程需要操作多个IO相关描述符时(例如服务器程序要同 ...
- 001_IntelliJ IDEA详细安装步骤
安装IntelliJ IDEA 一.安装JDK 1 下载最新的jdk,这里下的是jdk-8u66 2 将jdk安装到默认的路径C:\Program Files\Java目录下 二.安装IntelliJ ...
- ssh实现办公室电脑连接家中的电脑
友情提示:如果您不知道您家路由器管理页面的密码,请您忽略此文. 问题背景: 家中有台笔记本电脑,它是通过家中的路由器与外界联网的,这时,我想通过ssh服务让公司的电脑能连上我家中的笔记本. 可以画个图 ...
- Nginx反向代理的简单实现
1)nginx的反向代理:proxy_pass2)nginx的负载均衡:upstream 下面是nginx的反向代理和负载均衡的实例: 负载机:A机器:103.110.186.8/192.168.1. ...
- 12.12 Daily Scrum
这周末我们会集成一下反馈活跃用户的模块. 另外,今天编译的第一次测试结束,周末这两天项目的进度会比之前加快一些. Today's Task Tomorrow's Task 丁辛 实现和菜谱相关的餐 ...