Luogu 2679 NOIP 2015 子串 (动态规划)

Description

有两个仅包含小写英文字母的字符串 A 和 B。现在要从字符串 A 中取出 k 个互不重叠的非空子串,然后把这 k 个子串按照其在字符串 A 中出现的顺序依次连接起来得到一 个新的字符串,请问有多少种方案可以使得这个新串与字符串 B 相等?注意:子串取出 的位置不同也认为是不同的方案。

Input

第一行是三个正整数 n,m,k,分别表示字符串 A 的长度,字符串 B 的长度,以及问

题描述中所提到的 k,每两个整数之间用一个空格隔开。 第二行包含一个长度为 n 的字符串,表示字符串 A。 第三行包含一个长度为 m 的字符串,表示字符串 B。

Output

输出共一行,包含一个整数,表示所求方案数。由于答案可能很大,所以这里要求输出答案对 1,000,000,007 取模的结果。

Sample Input

6 3 1

aabaab

aab

Sample Output

2

Http

Luogu:https://www.luogu.org/problem/show?pid=2679

Source

动态规划

解决思路

设\(F[i][j][k][0/1]\)表示当前选到\(A\)的第\(i\)位,匹配到\(B\)的第\(j\)位,是第\(k\)个子串。0表示\(A\)的该位必选,1表示选or不选都行。

考虑两种情况

若\(A[i]==B[j]\),则可以将新的这个字符串接在前一个子串后面,这时要求前面一个必选,则\(F[i][j][k][0]\)可以从\(F[i-1][j-1][k][0]\)转移过来,也可以新开一个子串,此时对前面的字符是否选取没有要求,所以可以从\(F[i-1][j-1][k-1][1]\)转移来。

若\(A[i]!=B[j]\)则\(F[i][j][k][0]=0\)。

在求完\(F[i][j][k][0]\)后,\(F[i][j][k][1]=F[i][j][k][0]+F[i-1][j][k][1]\)。注意滚动数组。

代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std; const int maxN=1010;
const int maxM=210;
const int Mod=1000000007;
const int inf=2147483647; int n,m,K;
char A[maxN];
char B[maxM];
int F[2][maxM][maxM][2]; int main()
{
scanf("%d%d%d",&n,&m,&K);
scanf("%s",(A+1));
scanf("%s",(B+1));
memset(F,0,sizeof(F));
F[0][0][0][1]=F[1][0][0][1]=1;//初始值
for (int i=1;i<=n;i++)
{
F[i%2][0][0][1]=1;
for (int j=1;j<=m;j++)
for (int k=1;k<=K;k++)
{
if (A[i]==B[j])
F[i%2][j][k][0]=(F[(i-1)%2][j-1][k][0]+F[(i-1)%2][j-1][k-1][1])%Mod;
else
F[i%2][j][k][0]=0;
F[i%2][j][k][1]=(F[i%2][j][k][0]+F[(i-1)%2][j][k][1])%Mod;
}
}
printf("%d\n",F[n%2][m][K][1]%Mod);
return 0;
}

Luogu 2679 子串 (动态规划)的更多相关文章

  1. luogu 2679 子串

    子串 史上最简短的一篇博客,毕竟看题解ac心疼我的kmp /* f[i][j][k][0/1]表示A的前i个,B的前j个,用到了k个子串,当前字符选或者不选. 所以f[0][0][0][0]的方案数为 ...

  2. [Python]最长公共子序列 VS 最长公共子串[动态规划]

    前言 由于原微软开源的基于古老的perl语言的Rouge依赖环境实在难以搭建,遂跟着Rouge论文的描述自行实现. Rouge存在N.L.S.W.SU等几大子评估指标.在复现Rouge-L的函数时,便 ...

  3. leetcode-5 最长回文子串(动态规划)

    题目要求: * 给定字符串,求解最长回文子串 * 字符串最长为1000 * 存在独一无二的最长回文字符串 求解思路: * 回文字符串的子串也是回文,比如P[i,j](表示以i开始以j结束的子串)是回文 ...

  4. [LUOGU] P2679 子串

    一开始用一个f数组转移,发现不太对,状态有重叠部分 f[i][j][k]表示考虑了s的前i位,匹配到t的第j位,用了k个子串,且s的第i位必选 g[i][j][k]表示考虑了s的前i位,匹配到t的第j ...

  5. Luogu P2679 子串(字符串+dp)

    P2679 子串 题意 题目描述 有两个仅包含小写英文字母的字符串\(A\)和\(B\). 现在要从字符串\(A\)中取出\(k\)个互不重叠的非空子串,然后把这\(k\)个子串按照其在字符串\(A\ ...

  6. luogu P2258 子矩阵 |动态规划

    题目描述 给出如下定义: 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵. 例如,下面左图中选取第22.44行和第22.44.55列交叉 ...

  7. 【C++】最长回文子串/动态规划

    ACM #include <bits/stdc++.h> using namespace std; const int maxn = 1010; char S[maxn]; int dp[ ...

  8. PAT1040 Longest Symmetric String (25分) 中心扩展法+动态规划

    题目 Given a string, you are supposed to output the length of the longest symmetric sub-string. For ex ...

  9. Lintcode--005(最长公共子序列)

    Given two strings, find the longest common subsequence (LCS).     最长公共子序列 Your code should return th ...

随机推荐

  1. ASS字幕制作

    虽然不常做视频,但正因为是偶尔用到,所以总是记不牢,特此笔记. Name 字体名称?Fontname 字体名称(\fn冬青黑体简体中文 W3)(\fnVogueSans)(例:\N{\fn冬青黑体简体 ...

  2. SQL中not in 和not exists

    在SQL中倒是经常会用到子查询,而说到子查询,一般用的是in而不是exists,先不谈效率问题,就先说说会遇到哪些问题. 用到in当取反的时候,肯定先想到的就是not in.但是在使用not in的时 ...

  3. Uniform Generator HDU1014

    题意 给你公式seed(x+1) = [seed(x) + STEP] % MOD ,输入step和mod, 问你是否可以从第一项0,算到mod,它们是否都不同 是 good choice 否则 ba ...

  4. 对于VS软件的个人评价

    因为还是一个菜鸟,对于VS这样的大软件还只能是自己个人的理解,以前用的是VC++,后来因为电脑系统更新,开始接触了VS,个人觉得还是vs2010更好用一些,作为一款windows平台应用程序的集成开发 ...

  5. Linux内核分析第四周学习总结

    朱国庆+原创作品转载请注明出处 + <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 扒开系统调用的三层皮 ...

  6. JAVA常用工具类汇总

    一.功能方法目录清单: 1.getString(String sSource)的功能是判断参数是否为空,为空返回"",否则返回其值: 2.getString(int iSource ...

  7. 北京大学信息科学技术学院本科生课程体系课程大纲选登——计算机网络与WEB技术

  8. [福大软工] Z班 第11次成绩排行榜

    注:本次成绩排行榜是针对团队Alpha阶段冲刺博客的得分统计 作业要求 http://www.cnblogs.com/easteast/p/7749181.html 评分细则 在团队Alpha阶段刚开 ...

  9. spring mvc的工作原理

    该文转载自:http://blog.csdn.net/u012191627/article/details/41943393 SpringMVC框架介绍 1) spring MVC属于SpringFr ...

  10. Mock.js的简易使用

    一:安装 npm install mockjs --save-dev 二:引入 在src目录下创建mock.js文件,输入以下代码: // 引入mockjs const Mock = require( ...