『TensorFlow』分类问题与两种交叉熵
关于categorical cross entropy 和 binary cross entropy的比较,差异一般体现在不同的分类(二分类、多分类等)任务目标,可以参考文章keras中两种交叉熵损失函数的探讨,其结合keras的API讨论了两者的计算原理和应用原理。
本文主要是介绍TF中的接口调用方式。
一、二分类交叉熵
对应的是网络输出单个节点,这个节点将被sigmoid处理,使用阈值分类为0或者1的问题。此类问题logits和labels必须具有相同的type和shape。
原理介绍
设x = logits, z = labels.
logistic loss 计算式为:
其中交叉熵(cross entripy)基本函数式
z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x))
= z * -log(1 / (1 + exp(-x))) + (1 - z) * -log(exp(-x) / (1 + exp(-x)))
= z * log(1 + exp(-x)) + (1 - z) * (-log(exp(-x)) + log(1 + exp(-x)))
= z * log(1 + exp(-x)) + (1 - z) * (x + log(1 + exp(-x))
= (1 - z) * x + log(1 + exp(-x))
= x - x * z + log(1 + exp(-x))
对于x<0时,为了避免计算exp(-x)时溢出,我们使用以下这种形式表示
x - x * z + log(1 + exp(-x))
= log(exp(x)) - x * z + log(1 + exp(-x))
= - x * z + log(1 + exp(x))
综合x>0和x<0的情况,并防止溢出我们使用如下公式,
max(x, 0) - x *z + log(1 + exp(-abs(x)))
接口介绍
import numpy as np
import tensorflow as tf input_data = tf.Variable(np.random.rand(1, 3), dtype=tf.float32)
# np.random.rand()传入一个shape,返回一个在[0,1)区间符合均匀分布的array output = tf.nn.sigmoid_cross_entropy_with_logits(logits=input_data, labels=[[1.0, 0.0, 0.0]])
with tf.Session() as sess:
init = tf.global_variables_initializer()
sess.run(init)
print(sess.run(output))
# [[ 0.5583781 1.06925142 1.08170223]]
二、多分类交叉熵
对应的是网络输出多个节点,每个节点表示1个class的得分,使用Softmax最终处理的分类问题。
原理介绍
cross_entropy = -tf.reduce_mean(y * tf.log(tf.clip_by_value(y_pre, 1e-10, 1.0))
调用一下:
import tensorflow as tf input_data = tf.Variable([[0.2, 0.1, 0.9], [0.3, 0.4, 0.6]], dtype=tf.float32)
labels=tf.constant([[1,0,0], [0,1,0]], dtype=tf.float32) cross_entropy = -tf.reduce_mean(labels * tf.log(tf.clip_by_value(input_data, 1e-10, 1.0))) with tf.Session() as sess:
init = tf.global_variables_initializer()
sess.run(init)
print(sess.run(output))
接口介绍
softmax之后,计算输出层全部节点各自的交叉熵(输出向量而非标量)
cross_entropy_mean = tf.reduce_mean(
tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=tf.argmax(labels,1), logits=logits), name='cross_entropy') cross_entropy_mean = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(
logits=logits, labels=labels), name='cross_entropy')
tf.nn.softmax_cross_entropy_with_logits()
函数的参数label是稀疏表示的,比如表示一个3分类的一个样本的标签,稀疏表示的形式为[0,0,1]这个表示这个样本为第3个分类,而非稀疏表示就表示为2,同理[0,1,0]就表示样本属于第2个分类,而其非稀疏表示为1。
import tensorflow as tf input_data = tf.Variable([[0.2, 0.1, 0.9], [0.3, 0.4, 0.6]], dtype=tf.float32)
output = tf.nn.softmax_cross_entropy_with_logits(logits=input_data, labels=[[1,0,0],
[0,1,0]])
with tf.Session() as sess:
init = tf.global_variables_initializer()
sess.run(init)
print(sess.run(output))
tf.nn.sparse_softmax_cross_entropy_with_logits()
此函数大致与tf.nn.softmax_cross_entropy_with_logits的计算方式相同,
适用于每个类别相互独立且排斥的情况,一幅图只能属于一类,而不能同时包含一条狗和一只大象
但是在对于labels的处理上有不同之处,labels从shape来说此函数要求shape为[batch_size],
labels[i]是[0,num_classes)的一个索引, type为int32或int64,即labels限定了是一个一阶tensor,
并且取值范围只能在分类数之内,表示一个对象只能属于一个类别
import tensorflow as tf input_data = tf.Variable([[0.2, 0.1, 0.9], [0.3, 0.4, 0.6]], dtype=tf.float32)
output = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=input_data, labels=[0, 2])
with tf.Session() as sess:
init = tf.global_variables_initializer()
sess.run(init)
print(sess.run(output))
# [ 1.36573195 0.93983102]
比tf.nn.softmax_cross_entropy_with_logits多了一步将labels稀疏化的操作。因为深度学习中,图片一般是用非稀疏的标签的,所以tf.nn.sparse_softmax_cross_entropy_with_logits()的频率比tf.nn.softmax_cross_entropy_with_logits高。
不过两者输出尺寸等于输入shape去掉最后一维(上面输入[2*3],输出[2]),所以均常和tf.reduce_mean()连用。
『TensorFlow』分类问题与两种交叉熵的更多相关文章
- 『TensorFlow』SSD源码学习_其一:论文及开源项目文档介绍
一.论文介绍 读论文系列:Object Detection ECCV2016 SSD 一句话概括:SSD就是关于类别的多尺度RPN网络 基本思路: 基础网络后接多层feature map 多层feat ...
- 『TensorFlow』模型保存和载入方法汇总
『TensorFlow』第七弹_保存&载入会话_霸王回马 一.TensorFlow常规模型加载方法 保存模型 tf.train.Saver()类,.save(sess, ckpt文件目录)方法 ...
- 『TensorFlow』分布式训练_其三_多机分布式
本节中的代码大量使用『TensorFlow』分布式训练_其一_逻辑梳理中介绍的概念,是成熟的多机分布式训练样例 一.基本概念 Cluster.Job.task概念:三者可以简单的看成是层次关系,tas ...
- 『TensorFlow』专题汇总
TensorFlow:官方文档 TensorFlow:项目地址 本篇列出文章对于全零新手不太合适,可以尝试TensorFlow入门系列博客,搭配其他资料进行学习. Keras使用tf.Session训 ...
- 『TensorFlow』滑动平均
滑动平均会为目标变量维护一个影子变量,影子变量不影响原变量的更新维护,但是在测试或者实际预测过程中(非训练时),使用影子变量代替原变量. 1.滑动平均求解对象初始化 ema = tf.train.Ex ...
- 『TensorFlow』流程控制
『PyTorch』第六弹_最小二乘法对比PyTorch和TensorFlow TensorFlow 控制流程操作 TensorFlow 提供了几个操作和类,您可以使用它们来控制操作的执行并向图中添加条 ...
- 『TensorFlow』命令行参数解析
argparse很强大,但是我们未必需要使用这么繁杂的东西,TensorFlow自己封装了一个简化版本的解析方式,实际上是对argparse的封装 脚本化调用tensorflow的标准范式: impo ...
- 『TensorFlow』SSD源码学习_其五:TFR数据读取&数据预处理
Fork版本项目地址:SSD 一.TFR数据读取 创建slim.dataset.Dataset对象 在train_ssd_network.py获取数据操作如下,首先需要slim.dataset.Dat ...
- 『TensorFlow』读书笔记_降噪自编码器
『TensorFlow』降噪自编码器设计 之前学习过的代码,又敲了一遍,新的收获也还是有的,因为这次注释写的比较详尽,所以再次记录一下,具体的相关知识查阅之前写的文章即可(见上面链接). # Aut ...
随机推荐
- 与HTTP关系密切的三个协议:IP,TCP,DNS
IP(网际协议): 位于网络层 通常易混淆的是“IP”和“IP地址”,单独讲“IP”是指一种协议名称 IP协议的作用是将各种数据包传送给对方.而要保证确实传送到对方那里,则需要满足各类条件. 其中两个 ...
- ES6 Reflect 与 Proxy
概述 Proxy 与 Reflect 是 ES6 为了操作对象引入的 API . Proxy 可以对目标对象的读取.函数调用等操作进行拦截,然后进行操作处理.它不直接操作对象,而是像代理模式,通过对象 ...
- Golang--不定参数类型
1.不定参数类型 不定参数是指函数传入的参数个数为不定数量. package main import ( "fmt" ) //不定参数函数 func Add(a int, args ...
- 【LeetCode每天一题】Jump Game II(跳跃游戏II)
Given an array of non-negative integers, you are initially positioned at the first index of the arra ...
- Centos配置tomcat服务并且开机自启动
把要配置成服务的tomcat文件夹中的catalina.sh脚本文件拷一份到/etc/init.d目录,并且改文件名称为tomcat6 cp /usr/web/tomcat/tomcat-/bin/c ...
- POJ 3080 Blue Jeans(Java暴力)
Blue Jeans [题目链接]Blue Jeans [题目类型]Java暴力 &题意: 就是求k个长度为60的字符串的最长连续公共子串,2<=k<=10 规定: 1. 最长公共 ...
- Oracle 25用户的权限管理
理解什么是权限 权限指的是执行特定命令或访问数据库对象的权利. 理解权限的作用 (保证)数据库安全性:系统安全性,数据安全性 了解权限的分类 系统权限: 允许用户执行特定的数据库操作,如创建表.创建索 ...
- Android -- 带你从源码角度领悟Dagger2入门到放弃(一)
1,以前的博客也写了两篇关于Dagger2,但是感觉自己使用的时候还是云里雾里的,更不谈各位来看博客的同学了,所以今天打算和大家再一次的入坑试试,最后一次了,保证最后一次了. 2,接入项目 在项目的G ...
- TLS握手、中断恢复与证书中心的原因
在双方都拿到随机数A.B.C后,将会使用这三个随机数生成一个对话密钥,然后使用该对话密钥进行对称加密通信,这种方式我们可以看到,安全性取决于随机数C的加密,前面的几个都是明文传的,这里就取决于服务器的 ...
- firefox 实现web交互机器人
现在仅有火狐浏览器可以这样操作 -- Filefox 下面是项目目录 -- 前端页面 -- html <!DOCTYPE html> <html lang="en" ...