首先了解一下Mapreduce

它最本质的两个过程就是Map和Reduce,Map的应用在于我们需要数据一对一的元素的映射转换,比如说进行截取,进行过滤,或者任何的转换操作,这些一对一的元素转换就称作是Map;Reduce主要就是元素的聚合,就是多个元素对一个元素的聚合,比如求Sum等,这就是Reduce。
Mapreduce是Hadoop1.0的核心,Spark出现慢慢替代Mapreduce。那么为什么Mapreduce还在被使用呢?因为有很多现有的应用还依赖于它,它不是一个独立的存在,已经成为其他生态不可替代的部分,比如pig,hive等。
尽管MapReduce极大的简化了大数据分析,但是随着大数据需求和使用模式的扩大,用户的需求也越来越多:
1.    更复杂的多重处理需求(比如迭代计算, ML, Graph);
2.    低延迟的交互式查询需求(比如ad-hoc query)
而MapReduce计算模型的架构导致上述两类应用先天缓慢,用户迫切需要一种更快的计算模型,来补充MapReduce的先天不足。

    Spark的出现就弥补了这些不足,我们来了解一些Spark的优势:
1.每一个作业独立调度,可以把所有的作业做一个图进行调度,各个作业之间相互依赖,在调度过程中一起调度,速度快。
2.所有过程都基于内存,所以通常也将Spark称作是基于内存的迭代式运算框架。
3.spark提供了更丰富的算子,让操作更方便。
4.更容易的API:支持Python,Scala和Java
其实spark里面也可以实现Mapreduce,但是这里它并不是算法,只是提供了map阶段和reduce阶段,但是在两个阶段提供了很多算法。如Map阶段的map, flatMap, filter, keyBy,Reduce阶段的reduceByKey, sortByKey, mean, gourpBy, sort等。

为什么Spark比Map Reduced运算速度快???

这个问题包含了很多元素在里面

个人观点:Spark计算比MapReduce快的根本原因在于DAG计算模型。一般而言,DAG相比Hadoop的MapReduce在大多数情况下可以减少shuffle次数。

Hadoop每次计算的结果都要保存到hdfs,然后每次计算都需要从hdfs上读书数据,磁盘上的I/O开销比较大。
spark一次读取数据缓存在内存中,内存的数据读取比磁盘数据读取快很多。还有一点就是spark的RDD数据结构,RDD在每次transformation后并不立即执行,而且action后才执行,有进一步减少了I/O操作。
所以spark比Hadoop运行要快,尤其是对于需要迭代的程序。

Spark的优势的更多相关文章

  1. (一)Spark简介-Java&Python版Spark

    Spark简介 视频教程: 1.优酷 2.YouTube 简介: Spark是加州大学伯克利分校AMP实验室,开发的通用内存并行计算框架.Spark在2013年6月进入Apache成为孵化项目,8个月 ...

  2. 【原】Spark之机器学习(Python版)(二)——分类

    写这个系列是因为最近公司在搞技术分享,学习Spark,我的任务是讲PySpark的应用,因为我主要用Python,结合Spark,就讲PySpark了.然而我在学习的过程中发现,PySpark很鸡肋( ...

  3. Spark及其应用场景初探

    最近老大让用Spark做一个ETL项目,搭建了一套只有三个结点Standalone模式的Spark集群做测试,基础数据量大概8000W左右.看了官方文档,Spark确实在Map-Reduce上提升了很 ...

  4. spark第一篇--简介,应用场景和基本原理

    摘要: spark的优势:(1)图计算,迭代计算(2)交互式查询计算 spark特点:(1)分布式并行计算框架(2)内存计算,不仅数据加载到内存,中间结果也存储内存 为了满足挖掘分析与交互式实时查询的 ...

  5. 笔记:Spark简介

    Spark简介 [TOC] Spark是什么 Spark是基于内存计算的大数据并行计算框架 Spark是MapReduce的替代方案 Spark与Hadoop Spark是一个计算框架,而Hadoop ...

  6. 大数据基础知识问答----spark篇,大数据生态圈

    Spark相关知识点 1.Spark基础知识 1.Spark是什么? UCBerkeley AMPlab所开源的类HadoopMapReduce的通用的并行计算框架 dfsSpark基于mapredu ...

  7. Storm入门-Storm与Spark对比

    作为一名程序员通病就是不安分,对业界的技术总要折腾一番,哪怕在最终实际工作中应用到的就那么一点.最近自己准备入门Storm学习,关于流式大数据框架目前比较流行的有Spark和Storm等,在入门之前, ...

  8. 白话大数据 | Spark和Hadoop到底谁更厉害?

    要想搞清楚spark跟Hadoop到底谁更厉害,首先得明白spark到底是什么鬼. 经过之前的介绍大家应该非常了解什么是Hadoop了(不了解的点击这里:白话大数据 | hadoop究竟是什么鬼),简 ...

  9. spark基础知识

    1.Spark是什么? UCBerkeley AMPlab所开源的类HadoopMapReduce的通用的并行计算框架. dfsSpark基于mapreduce算法实现的分布式计算,拥有HadoopM ...

随机推荐

  1. 11. English vocabulary 英语词汇量

    11. English vocabulary 英语词汇量 (1) The exact number of English words is not known.The large dictionari ...

  2. sax 动态切换 抓取感兴趣的内容(把element当做documnet 处理)

    由switch 类触发事件 import org.xml.sax.Attributes; import org.xml.sax.SAXException; import org.xml.sax.hel ...

  3. Beta冲刺 (4/7)

    Part.1 开篇 队名:彳艮彳亍团队 组长博客:戳我进入 作业博客:班级博客本次作业的链接 Part.2 成员汇报 组员1(组长)柯奇豪 过去两天完成了哪些任务 共享编辑文章的后端数据处理 展示Gi ...

  4. json、txt、xlsx

    json:   json异于pickle,无乱码,各语言都支持,但Python各对象只直接接收int,str,(),[],{}.读入txt时只接受str,int变为str(int),()[]{}被js ...

  5. wpf使用FFMEPG录制屏幕

    Simple function of recording screen based on ffmpeg Using WPF环境 Visual Studio 2017,dotNet Framework ...

  6. python 使用进程池Pool进行并发编程

    进程池Pool 当需要创建的子进程数量不多时,可以直接利用multiprocessing中的Process动态成生多个进程,但如果是上百甚至上千个目标,手动的去创建进程的工作量巨大,此时就可以用到mu ...

  7. MongoDB 数据库

    数据库: 关系型数据库       mysql           收费        速度快     字段类型 非关系型数据库   MongoDB    不收费    速度慢一些 存储数据都是字符串 ...

  8. 设置select,option文本居中

    设置select,option文本居中 可以通过 padding 属性设置内边距,使它看上去居中: select{ # 从左到右依次表示上内边距,右内边距,下内边距,左内边距: padding :0 ...

  9. ORACLE更新数据时如果有就更新没有就插入

    SQL写法: begin update table_name set salary = 10000 where emp_id = 5; if sql%notfound then insert into ...

  10. C++ vector 容器浅析

    一.什么是vector? 向量(Vector)是一个封装了动态大小数组的顺序容器(Sequence Container).跟任意其它类型容器一样,它能够存放各种类型的对象.可以简单的认为,向量是一个能 ...