Spark的优势
首先了解一下Mapreduce
它最本质的两个过程就是Map和Reduce,Map的应用在于我们需要数据一对一的元素的映射转换,比如说进行截取,进行过滤,或者任何的转换操作,这些一对一的元素转换就称作是Map;Reduce主要就是元素的聚合,就是多个元素对一个元素的聚合,比如求Sum等,这就是Reduce。
Mapreduce是Hadoop1.0的核心,Spark出现慢慢替代Mapreduce。那么为什么Mapreduce还在被使用呢?因为有很多现有的应用还依赖于它,它不是一个独立的存在,已经成为其他生态不可替代的部分,比如pig,hive等。
尽管MapReduce极大的简化了大数据分析,但是随着大数据需求和使用模式的扩大,用户的需求也越来越多:
1. 更复杂的多重处理需求(比如迭代计算, ML, Graph);
2. 低延迟的交互式查询需求(比如ad-hoc query)
而MapReduce计算模型的架构导致上述两类应用先天缓慢,用户迫切需要一种更快的计算模型,来补充MapReduce的先天不足。
Spark的出现就弥补了这些不足,我们来了解一些Spark的优势:
1.每一个作业独立调度,可以把所有的作业做一个图进行调度,各个作业之间相互依赖,在调度过程中一起调度,速度快。
2.所有过程都基于内存,所以通常也将Spark称作是基于内存的迭代式运算框架。
3.spark提供了更丰富的算子,让操作更方便。
4.更容易的API:支持Python,Scala和Java
其实spark里面也可以实现Mapreduce,但是这里它并不是算法,只是提供了map阶段和reduce阶段,但是在两个阶段提供了很多算法。如Map阶段的map, flatMap, filter, keyBy,Reduce阶段的reduceByKey, sortByKey, mean, gourpBy, sort等。
为什么Spark比Map Reduced运算速度快???
这个问题包含了很多元素在里面
个人观点:Spark计算比MapReduce快的根本原因在于DAG计算模型。一般而言,DAG相比Hadoop的MapReduce在大多数情况下可以减少shuffle次数。
Hadoop每次计算的结果都要保存到hdfs,然后每次计算都需要从hdfs上读书数据,磁盘上的I/O开销比较大。
spark一次读取数据缓存在内存中,内存的数据读取比磁盘数据读取快很多。还有一点就是spark的RDD数据结构,RDD在每次transformation后并不立即执行,而且action后才执行,有进一步减少了I/O操作。
所以spark比Hadoop运行要快,尤其是对于需要迭代的程序。
Spark的优势的更多相关文章
- (一)Spark简介-Java&Python版Spark
Spark简介 视频教程: 1.优酷 2.YouTube 简介: Spark是加州大学伯克利分校AMP实验室,开发的通用内存并行计算框架.Spark在2013年6月进入Apache成为孵化项目,8个月 ...
- 【原】Spark之机器学习(Python版)(二)——分类
写这个系列是因为最近公司在搞技术分享,学习Spark,我的任务是讲PySpark的应用,因为我主要用Python,结合Spark,就讲PySpark了.然而我在学习的过程中发现,PySpark很鸡肋( ...
- Spark及其应用场景初探
最近老大让用Spark做一个ETL项目,搭建了一套只有三个结点Standalone模式的Spark集群做测试,基础数据量大概8000W左右.看了官方文档,Spark确实在Map-Reduce上提升了很 ...
- spark第一篇--简介,应用场景和基本原理
摘要: spark的优势:(1)图计算,迭代计算(2)交互式查询计算 spark特点:(1)分布式并行计算框架(2)内存计算,不仅数据加载到内存,中间结果也存储内存 为了满足挖掘分析与交互式实时查询的 ...
- 笔记:Spark简介
Spark简介 [TOC] Spark是什么 Spark是基于内存计算的大数据并行计算框架 Spark是MapReduce的替代方案 Spark与Hadoop Spark是一个计算框架,而Hadoop ...
- 大数据基础知识问答----spark篇,大数据生态圈
Spark相关知识点 1.Spark基础知识 1.Spark是什么? UCBerkeley AMPlab所开源的类HadoopMapReduce的通用的并行计算框架 dfsSpark基于mapredu ...
- Storm入门-Storm与Spark对比
作为一名程序员通病就是不安分,对业界的技术总要折腾一番,哪怕在最终实际工作中应用到的就那么一点.最近自己准备入门Storm学习,关于流式大数据框架目前比较流行的有Spark和Storm等,在入门之前, ...
- 白话大数据 | Spark和Hadoop到底谁更厉害?
要想搞清楚spark跟Hadoop到底谁更厉害,首先得明白spark到底是什么鬼. 经过之前的介绍大家应该非常了解什么是Hadoop了(不了解的点击这里:白话大数据 | hadoop究竟是什么鬼),简 ...
- spark基础知识
1.Spark是什么? UCBerkeley AMPlab所开源的类HadoopMapReduce的通用的并行计算框架. dfsSpark基于mapreduce算法实现的分布式计算,拥有HadoopM ...
随机推荐
- 11. English vocabulary 英语词汇量
11. English vocabulary 英语词汇量 (1) The exact number of English words is not known.The large dictionari ...
- sax 动态切换 抓取感兴趣的内容(把element当做documnet 处理)
由switch 类触发事件 import org.xml.sax.Attributes; import org.xml.sax.SAXException; import org.xml.sax.hel ...
- Beta冲刺 (4/7)
Part.1 开篇 队名:彳艮彳亍团队 组长博客:戳我进入 作业博客:班级博客本次作业的链接 Part.2 成员汇报 组员1(组长)柯奇豪 过去两天完成了哪些任务 共享编辑文章的后端数据处理 展示Gi ...
- json、txt、xlsx
json: json异于pickle,无乱码,各语言都支持,但Python各对象只直接接收int,str,(),[],{}.读入txt时只接受str,int变为str(int),()[]{}被js ...
- wpf使用FFMEPG录制屏幕
Simple function of recording screen based on ffmpeg Using WPF环境 Visual Studio 2017,dotNet Framework ...
- python 使用进程池Pool进行并发编程
进程池Pool 当需要创建的子进程数量不多时,可以直接利用multiprocessing中的Process动态成生多个进程,但如果是上百甚至上千个目标,手动的去创建进程的工作量巨大,此时就可以用到mu ...
- MongoDB 数据库
数据库: 关系型数据库 mysql 收费 速度快 字段类型 非关系型数据库 MongoDB 不收费 速度慢一些 存储数据都是字符串 ...
- 设置select,option文本居中
设置select,option文本居中 可以通过 padding 属性设置内边距,使它看上去居中: select{ # 从左到右依次表示上内边距,右内边距,下内边距,左内边距: padding :0 ...
- ORACLE更新数据时如果有就更新没有就插入
SQL写法: begin update table_name set salary = 10000 where emp_id = 5; if sql%notfound then insert into ...
- C++ vector 容器浅析
一.什么是vector? 向量(Vector)是一个封装了动态大小数组的顺序容器(Sequence Container).跟任意其它类型容器一样,它能够存放各种类型的对象.可以简单的认为,向量是一个能 ...