[MACHINE LEARNING] Can we predict voting outcomes?
1. CART Tree
library(rpart)
library(rpart.plot)
CTree = rpart(Party ~ . -USER_ID, data = train, method = "class")
PredTest = predict(CTree, newdata = test, type = "class") # result is bad
2. Cross validation
library(e1071)
library(caret)
set.seed(100)
numFolds = trainControl(method = "cv", number = 10)
cpGrid = expand.grid(.cp = seq (0.01,0.50,0.01))
tr = train(Party ~.- USER_ID,method = "rpart",data = train,trControl = numFolds, tuneGrid = cpGrid,na.action = na.pass)
Tip: the red part is to deal with missing NA values #cp = 0.04
3. CART Tree
CTree = rpart(Party ~ . -USER_ID, data = train, method = "class", cp = 0.04)
PredTest = predict(CTree, newdata = test, type = "class")
#after upload, the accuracy is 0.61207. it is my first time, the score is higher than the default logistic regression 0.57902
p.s. I also tried random forest
library(randomForest)
RFTree = randomForest(Party ~.- USER_ID,method = "rpart",data = train, ntree = 500, cp = 0.04, na.action = na.omit)
#The score is not good.
2017/3/20 I am thinking i need to learn how to plot about the complex data structure. ggplot2. I think it's a good way for me.
[MACHINE LEARNING] Can we predict voting outcomes?的更多相关文章
- machine learning in action , part 1
We should think in below four questions: the decription of machine learning key tasks in machine lea ...
- 7 Exciting Uses of Machine Learning in FinTech
https://rubygarage.org/blog/machine-learning-in-fintech Machine learning (ML) has moved from the per ...
- Practical Machine Learning For The Uninitiated
Practical Machine Learning For The Uninitiated Last fall when I took on ShippingEasy's machine learn ...
- Targeted Learning R Packages for Causal Inference and Machine Learning(转)
Targeted learning methods build machine-learning-based estimators of parameters defined as features ...
- Introducing: Machine Learning in R(转)
Machine learning is a branch in computer science that studies the design of algorithms that can lear ...
- 学习笔记之Machine Learning Crash Course | Google Developers
Machine Learning Crash Course | Google Developers https://developers.google.com/machine-learning/c ...
- CheeseZH: Stanford University: Machine Learning Ex2:Logistic Regression
1. Sigmoid Function In Logisttic Regression, the hypothesis is defined as: where function g is the s ...
- Machine Learning and Data Mining(机器学习与数据挖掘)
Problems[show] Classification Clustering Regression Anomaly detection Association rules Reinforcemen ...
- [C5] Andrew Ng - Structuring Machine Learning Projects
About this Course You will learn how to build a successful machine learning project. If you aspire t ...
随机推荐
- php 7 event 安装
有效安排I/O,时间和信号的扩展 使用可用于特定平台的最佳I/O通知机制的事件,是PHP基础设施的libevent端口. 下载地址:http://pecl.php.net/package/event ...
- 报错:NoSuchMethodError: kafka.javaapi.PartitionMetadata.leader()Lkafka/cluster/Broker;
报错现象: 在pom文件添加: <dependency> <groupId>org.apache.kafka</groupId> <artifactId> ...
- iOS开发SDWebImageOptions理解
iOS开发SDWebImageOptions理解 原文 http://www.cnblogs.com/WJJ-Dream/p/5816750.html typedef NS_OPTIONS(NSUIn ...
- Android仿淘宝继续上拉进入商品详情页的效果,使用双Fragment动画切换;
仿淘宝继续上拉进入商品详情页的效果,双Fragment实现: 动画效果: slide_above_in.xml <?xml version="1.0" encoding=&q ...
- SQLServer数据库镜像配置
目录 一.目标...2 二.前提条件.限制和建议...2 三.设置概述...2 四.安装Sql Server 2008 enterprise X64.3 4.1.安装.NET3.5.3 4.2.安装时 ...
- 事务、事务特性、事务隔离级别、spring事务传播特性
事务.事务特性.事务隔离级别.spring事务传播特性 1.什么是事务: 事务是程序中一系列严密的操作,所有操作执行必须成功完成,否则在每个操作所做的更改将会被撤销,这也是事务的原子性(要么成功, ...
- python大法好——Python2.x与3.x版本区别
python大法好——Python2.x与3.x版本区别 Python的3.0版本,常被称为Python 3000,或简称Py3k.相对于Python的早期版本,这是一个较大的升级. 为了不带 ...
- maven构建SSM框架中pom.xml文件配置
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/20 ...
- delphi WebBrowser IPv6
We discovered one or more bugs in your app when reviewed on iPhone running iOS 11.4 on Wi-Fi connect ...
- JS 高级总结
一.查找HTML元素 通常,通过 JavaScript,您需要操作 HTML 元素. 1.通过 id 找到 HTML 元素 2.通过标签名找到 HTML 元素 3.通过类名找到 HTML 元素 提示: ...