Luogu P2602 [ZJOI2010]数字计数
这算是一道数位DP的入门题了吧虽然对于我来说还是有点烦
经典起手式不讲了吧,\(ans(a,b)\to ans(1,b)-ans(1,a-1)\)
我们首先预处理一个东西,用\(f_i\)表示有\(i\)位数字的时候,每个数字有几个(注意是和)。若不考虑前导零,则所有数字都是等价的,转移为:
\(f_i=10\cdot f_{i-1}+10^{i-1}\)
这个还是比较好理解的吧,前面一项表示无论这一位放什么直接从前面拿过来已有的,所以这一位可以放\(0\to9\)十个数,后面一项表示当这一位放上想要的数字时和前面得出的贡献。
我们发现这样就很巧妙的避免了重复,因为前后两次计算刚好会产生多次贡献。
然后考虑如何根据\(f_i\)推出答案。假设现在的数为\(ABCD\)
和常规的数位DP一样,我们优先考虑首位对答案的共献,由于\(1000,2000,...,A000\)都小于等于\(ABCD\),可以直接加入贡献,所以我们将答案加上\(A\cdot f_3\)即可。
然后就是剩下的\(A000\to ABCD\)部分了,但是我们发现这个的求解过程就相当于\(BCD\)的贡献。
所以我们成功将大问题分解,接下来就是继续算下一位的贡献了
最后还有一个关于前导零的问题了,我们继续手玩一波
当首位为\(0\)时,后面的\(10^{i-1}\)位都是不合法的,以此类推,当前两位为\(0\)时,后面的\(10^{i-2}\)位也不合法。
因此\(0\)的贡献应该减去\(\sum_{i=0}^{len-1} 10^i\)(\(len\)表示数字位数)
然后可喜可贺,终于做完了,上CODE吧
#include<cstdio>
#include<cctype>
using namespace std;
const int N=15;
const long long pow[12]={1,10,100,1000,10000,100000,1000000,10000000,100000000,1000000000,10000000000,100000000000};
long long a,b,c[10],d[10],f[N];
int bit[N],cnt;
inline char tc(void)
{
static char fl[100000],*A=fl,*B=fl;
return A==B&&(B=(A=fl)+fread(fl,1,100000,stdin),A==B)?EOF:*A++;
}
inline void read(long long &x)
{
x=0; char ch; while (!isdigit(ch=tc()));
while (x=(x<<3)+(x<<1)+ch-'0',isdigit(ch=tc()));
}
inline void write(long long x)
{
if (x>9) write(x/10);
putchar(x%10+'0');
}
inline void init(void)
{
for (register int i=1;i<=12;++i) f[i]=f[i-1]*10+pow[i-1];
}
inline void resolve(long long x)
{
cnt=0; while (x) bit[++cnt]=x%10,x/=10;
}
inline void solve(long long x,long long *num)
{
register int i,j; resolve(x);
for (i=cnt;i>=1;--i)
{
for (j=0;j<bit[i];++j) num[j]+=pow[i-1];
for (j=0;j<=9;++j) num[j]+=f[i-1]*bit[i];
long long tot=0;
for (j=i-1;j>=1;--j) tot=tot*10+bit[j];
num[bit[i]]+=tot+1; num[0]-=pow[i-1];
}
}
int main()
{
//freopen("CODE.in","r",stdin); freopen("CODE.out","w",stdout);
register int i; read(a); read(b); init();
solve(a-1,c); solve(b,d);
for (i=0;i<=9;++i) write(d[i]-c[i]),putchar(' ');
return 0;
}
Luogu P2602 [ZJOI2010]数字计数的更多相关文章
- Luogu P2602 [ZJOI2010]数字计数 数位DP
很久以前就...但是一直咕咕咕 思路:数位$DP$ 提交:1次 题解:见代码 #include<cstdio> #include<iostream> #include<c ...
- 洛谷P2602 [ZJOI2010]数字计数 题解 数位DP
题目链接:https://www.luogu.com.cn/problem/P2602 题目大意: 计算区间 \([L,R]\) 范围内 \(0 \sim 9\) 各出现了多少次? 解题思路: 使用 ...
- P2602 [ZJOI2010]数字计数(递推)
P2602 [ZJOI2010]数字计数 思路: 首先考虑含有前导0的情况,可以发现在相同的\(i\)位数中,每个数的出现次数都是相等的.所以我们可以设\(f(i)\)为\(i\)位数每个数的出现次数 ...
- P2602 [ZJOI2010]数字计数&P1239 计数器&P4999 烦人的数学作业
P2602 [ZJOI2010]数字计数 题解 DFS 恶心的数位DP 对于这道题,我们可以一个数字一个数字的求 也就是分别统计区间 [ L , R ] 内部数字 i 出现的次数 (0<=i&l ...
- 数位dp详解&&LG P2602 [ZJOI2010]数字计数
数位dp,适用于解决一类求x~y之间有多少个符合要求的数或者其他. 例题 题目描述 杭州交通管理局经常会扩充一些的士车牌照,新近出来一个好消息,以后上牌照,不再含有不吉利的数字了,这样一来,就可以消除 ...
- 洛谷P2602 [ZJOI2010]数字计数(数位dp)
数字计数 题目传送门 解题思路 用\(dp[i][j][k]\)来表示长度为\(i\)且以\(j\)为开头的数里\(k\)出现的次数. 则转移方程式为:\(dp[i][j][k] += \sum_{t ...
- P2602 [ZJOI2010]数字计数
https://www.luogu.org/problemnew/show/P2602 数位dp #include <bits/stdc++.h> using namespace std; ...
- 洛谷 P2602 [ZJOI2010]数字计数
洛谷 第一次找规律A了一道紫题,写篇博客纪念一下. 这题很明显是数位dp,但是身为蒟蒻我不会呀,于是就像分块打表水过去. 数据范围是\(10^{12}\),我就\(10^6\)一百万一百万的打表. 于 ...
- [洛谷P2602][ZJOI2010]数字计数
题目大意:求区间$[l,r]$中数字$0\sim9$出现个数 题解:数位$DP$ 卡点:无 C++ Code: #include <cstdio> #include <iostrea ...
随机推荐
- Linux 操作系统主机名变成bogon怎么解决?
主机名变成bogon怎么解决? by:授客 QQ:1033553122 一:使用hostname命令 [laiyu@localhost ~]$ hostname localhost.localdo ...
- 《ASP.NET MVC企业实战》(三)MVC开发前奏
在上一篇“<ASP.NET MVC企业级实战>(二)MVC开发前奏”中跟随作者大概了解了一些C#3.0和3.5中的新特性.本篇继续以这样的方式来学习C#中的一些特性. 一.C#3. ...
- JavaScript大杂烩5 - JavaScript对象的若干问题
1. 类型检查:instanceof与typeof 这是两个相似的操作符,instanceof用于检测函数的实例类型,主要是在面向对象编程中检查new出来的对象类型,需要注意instanceof是检查 ...
- maven——依赖管理
管理包依赖是 Maven 核心功能之一,下面通过如何引入 jar 包:如何解析 jar 包依赖:包冲突是如何产生:如何解决包冲突:依赖管理解决什么问题:什么是依赖范围:使用包依赖的最佳实践等 6 个问 ...
- [20171205]uniq命令的输入输出.txt
[20171205]uniq命令的输入输出.txt --//前几天遇到XXD与通配符问题,链接http://blog.itpub.net/267265/viewspace-2147702/--//今天 ...
- WCF服务端开发和客户端引用小结
1.服务端开发 1.1 WCF服务创建方式 创建一个WCF服务,总是会创建一个服务接口和一个服务接口实现.通常根据服务宿主的不同,有两种创建方式. (1)创建WCF应用程序 通过创建WCF服务应用程序 ...
- Linux进程描述符task_struct结构体详解--Linux进程的管理与调度(一)【转】
Linux内核通过一个被称为进程描述符的task_struct结构体来管理进程,这个结构体包含了一个进程所需的所有信息.它定义在include/linux/sched.h文件中. 谈到task_str ...
- mysql常见的错误代码
如果安装时或者工作中有问题,可以看错误日志分析问题原因: 1005:创建表失败 1006:创建数据库失败 1007:数据库已存在,创建数据库失败 1008:数据库不存在,删除数据库失败 1009:不能 ...
- Pandas:让你像写SQL一样做数据分析
1. 引言 Pandas是一个开源的Python数据分析库.Pandas把结构化数据分为了三类: Series,1维序列,可视作为没有column名的.只有一个column的DataFrame: Da ...
- tkinter学习系列之(六)Radiobutton控件
目录 目录 前言 (一)基本属性 (二)在Frame里布局: 目录 前言 Radiobutton单选框,在一组选框中,只能选中一个. (一)基本属性 (1)特有属性: value 按钮的值 varia ...