Minimal Ratio Tree

Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other)
Total Submission(s) : 12   Accepted Submission(s) : 7

Font: Times New Roman | Verdana | Georgia

Font Size: ← →

Problem Description

For a tree, which nodes and edges are all weighted, the ratio of it is calculated according to the following equation.

Given a complete graph of n nodes with all nodes and edges weighted, your task is to find a tree, which is a sub-graph of the original graph, with m nodes and whose ratio is the smallest among all the trees of m nodes in the graph.

Input

Input contains multiple test cases. The first line of each test case contains two integers n (2<=n<=15) and m (2<=m<=n), which stands for the number of nodes in the graph and the number of nodes in the minimal ratio tree. Two zeros end the input. The next line contains n numbers which stand for the weight of each node. The following n lines contain a diagonally symmetrical n×n connectivity matrix with each element shows the weight of the edge connecting one node with another. Of course, the diagonal will be all 0, since there is no edge connecting a node with itself.

All the weights of both nodes and edges (except for the ones on the diagonal of the matrix) are integers and in the range of [1, 100].

The figure below illustrates the first test case in sample input. Node 1 and Node 3 form the minimal ratio tree. 

Output

For each test case output one line contains a sequence of the m nodes which constructs the minimal ratio tree. Nodes should be arranged in ascending order. If there are several such sequences, pick the one which has the smallest node number; if there's a tie, look at the second smallest node number, etc. Please note that the nodes are numbered from 1 .

Sample Input

3 2
30 20 10
0 6 2
6 0 3
2 3 0
2 2
1 1
0 2
2 0
0 0

Sample Output

1 3
1 2
#include <iostream>
#include<cstdio>
#include<cstring>
#include<climits>
using namespace std; int a[],f[],p[];
int mp[][];
bool vis[];
int i,j,n,m;
double ans;
void prim() //最小生成树
{
bool vis[];
int dis[];
int sumnode,sumedge=,k;
memset(vis,,sizeof(vis));
vis[]=;
sumnode=p[a[]];
for(int i=;i<=m;i++) dis[i]=mp[a[]][a[i]];
for(int i=;i<m;i++)
{
int minn=INT_MAX;
for(int j=;j<=m;j++)
{
if (!vis[j] && dis[j]<minn)
{
minn=dis[j];
k=j;
}
}
vis[k]=;
sumedge+=minn;
sumnode+=p[a[k]];
for(int j=;j<=m;j++)
if (!vis[j] && dis[j]>mp[a[k]][a[j]])
dis[j]=mp[a[k]][a[j]];
}
double w=sumedge*1.0/sumnode;
if (w<ans) //把最优解存放在f数组中
{
ans=w;
for(int i=;i<=m;i++)
f[i]=a[i];
}
return;
}
void dfs(int k,int num)//dfs暴力枚举m个节点是哪几个存在a数组中
{
if (num==m)
{
prim();
return;
}
if (k>n) return; if (!vis[k])
{
vis[k]=;
a[num+]=k;
dfs(k+,num+);
vis[k]=;
}
dfs(k+,num);
return;
}
int main()
{
while(scanf("%d%d",&n,&m))
{
if (n== && m==) break;
for(i=;i<=n;i++) scanf("%d",&p[i]);
for(i=;i<=n;i++)
for(j=;j<=n;j++)
scanf("%d",&mp[i][j]);
memset(vis,,sizeof(vis));
ans=INT_MAX*1.0;
dfs(,);
for(i=;i<m;i++) printf("%d ",f[i]);
printf("%d\n",f[m]);
}
return ;
}

HDU 2489 Minimal Ratio Tree (DFS枚举+最小生成树Prim)的更多相关文章

  1. HDU 2489 Minimal Ratio Tree(dfs枚举+最小生成树)

    想到枚举m个点,然后求最小生成树,ratio即为最小生成树的边权/总的点权.但是怎么枚举这m个点,实在不会.网上查了一下大牛们的解法,用dfs枚举,没想到dfs还有这么个作用. 参考链接:http:/ ...

  2. HDU 2489 Minimal Ratio Tree (dfs+Prim最小生成树)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2489 Problem Description For a tree, which nodes and ...

  3. HDU 2489 Minimal Ratio Tree(暴力+最小生成树)(2008 Asia Regional Beijing)

    Description For a tree, which nodes and edges are all weighted, the ratio of it is calculated accord ...

  4. HDU 2489 Minimal Ratio Tree 最小生成树+DFS

    Minimal Ratio Tree Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  5. HDU 2489 Minimal Ratio Tree(prim+DFS)

    Minimal Ratio Tree Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  6. hdu 2489 Minimal Ratio Tree

    http://acm.hdu.edu.cn/showproblem.php?pid=2489 这道题就是n个点中选择m个点形成一个生成树使得生成树的ratio最小.暴力枚举+最小生成树. #inclu ...

  7. hdu2489 Minimal Ratio Tree dfs枚举组合情况+最小生成树

    #include <stdio.h> #include <set> #include <string.h> #include <algorithm> u ...

  8. Minimal Ratio Tree HDU - 2489

    Minimal Ratio Tree HDU - 2489 暴力枚举点,然后跑最小生成树得到这些点时的最小边权之和. 由于枚举的时候本来就是按照字典序的,不需要额外判. 错误原因:要求输出的结尾不能有 ...

  9. HDU2489 Minimal Ratio Tree 【DFS】+【最小生成树Prim】

    Minimal Ratio Tree Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

随机推荐

  1. From windows live writer

    天线数据长度: 4*14*9664*4 = 2164736 信道估计长度: 614400 均衡: 12*1200*4 = 57600

  2. C# 几个特殊运算符的理解和Nullable<T> 的研究

    可空值类型和?运算符 谈到运算符,大家一定很熟悉,但是对所有的运算符都能掌握吗? 看了下面代码再回答. Nullable<Int32> count = ; ; bool? flag = f ...

  3. Python 学习笔记12

    不积跬步,无以至千里.不积小流,无以成江河. 当我觉得沮丧.绝望的时候,就疯狂的敲代码,这样会好受一点. 今天和昨天敲了两天的小程序,算是对python的具体语法规则有个初步的手熟. http://w ...

  4. Quartz(任务调度)- job串行避免死锁

    参照:http://blog.csdn.net/haitaofeiyang/article/details/50737644 quartz框架中防止任务并行可以有两种方案:   1.如果是通过Meth ...

  5. 数组实现UITabview的cell设置

  6. 五种JSP页面跳转方法详解

    1. RequestDispatcher.forward() 是在服务器端起作用,当使用forward()时,Servlet engine传递HTTP请求从当前的Servlet or JSP到另外一个 ...

  7. android性能调优之traceview的使用

    1.在开始使用TraceView你要注意: 你的设备和模拟器必须设置SD card 和 你的程序拥有对SD card 具有读写操作的权限( <uses-permission android:na ...

  8. 《Windows驱动开发技术详解》之IRP的同步

    应用程序对设备的同步异步操作: 大部分IRP都是由应用程序的Win32 API函数发起的.这些Win32 API本身就支持同步和异步操作.例如,ReadFile.WriteFile和DeviceIoC ...

  9. 第十五节,基本数据类型,元组tuple

    元组和列表的区别 元组和列表几乎是一样的 不一样的地方就是元组创建后元组的元素不可以修改,比如(添加,拓展,移除等修改功能,但是元组里的元素的元素是可以修改的) 基本操作: 索引 切片 循环 长度 包 ...

  10. DOM操作-遍历HTML文档内容

    基础:   JS nodeType返回类型:http://blog.csdn.net/qyf_5445/article/details/9232907 代码: <!DOCTYPE html> ...