Minimal Ratio Tree

Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other)
Total Submission(s) : 12   Accepted Submission(s) : 7

Font: Times New Roman | Verdana | Georgia

Font Size: ← →

Problem Description

For a tree, which nodes and edges are all weighted, the ratio of it is calculated according to the following equation.

Given a complete graph of n nodes with all nodes and edges weighted, your task is to find a tree, which is a sub-graph of the original graph, with m nodes and whose ratio is the smallest among all the trees of m nodes in the graph.

Input

Input contains multiple test cases. The first line of each test case contains two integers n (2<=n<=15) and m (2<=m<=n), which stands for the number of nodes in the graph and the number of nodes in the minimal ratio tree. Two zeros end the input. The next line contains n numbers which stand for the weight of each node. The following n lines contain a diagonally symmetrical n×n connectivity matrix with each element shows the weight of the edge connecting one node with another. Of course, the diagonal will be all 0, since there is no edge connecting a node with itself.

All the weights of both nodes and edges (except for the ones on the diagonal of the matrix) are integers and in the range of [1, 100].

The figure below illustrates the first test case in sample input. Node 1 and Node 3 form the minimal ratio tree. 

Output

For each test case output one line contains a sequence of the m nodes which constructs the minimal ratio tree. Nodes should be arranged in ascending order. If there are several such sequences, pick the one which has the smallest node number; if there's a tie, look at the second smallest node number, etc. Please note that the nodes are numbered from 1 .

Sample Input

3 2
30 20 10
0 6 2
6 0 3
2 3 0
2 2
1 1
0 2
2 0
0 0

Sample Output

1 3
1 2
#include <iostream>
#include<cstdio>
#include<cstring>
#include<climits>
using namespace std; int a[],f[],p[];
int mp[][];
bool vis[];
int i,j,n,m;
double ans;
void prim() //最小生成树
{
bool vis[];
int dis[];
int sumnode,sumedge=,k;
memset(vis,,sizeof(vis));
vis[]=;
sumnode=p[a[]];
for(int i=;i<=m;i++) dis[i]=mp[a[]][a[i]];
for(int i=;i<m;i++)
{
int minn=INT_MAX;
for(int j=;j<=m;j++)
{
if (!vis[j] && dis[j]<minn)
{
minn=dis[j];
k=j;
}
}
vis[k]=;
sumedge+=minn;
sumnode+=p[a[k]];
for(int j=;j<=m;j++)
if (!vis[j] && dis[j]>mp[a[k]][a[j]])
dis[j]=mp[a[k]][a[j]];
}
double w=sumedge*1.0/sumnode;
if (w<ans) //把最优解存放在f数组中
{
ans=w;
for(int i=;i<=m;i++)
f[i]=a[i];
}
return;
}
void dfs(int k,int num)//dfs暴力枚举m个节点是哪几个存在a数组中
{
if (num==m)
{
prim();
return;
}
if (k>n) return; if (!vis[k])
{
vis[k]=;
a[num+]=k;
dfs(k+,num+);
vis[k]=;
}
dfs(k+,num);
return;
}
int main()
{
while(scanf("%d%d",&n,&m))
{
if (n== && m==) break;
for(i=;i<=n;i++) scanf("%d",&p[i]);
for(i=;i<=n;i++)
for(j=;j<=n;j++)
scanf("%d",&mp[i][j]);
memset(vis,,sizeof(vis));
ans=INT_MAX*1.0;
dfs(,);
for(i=;i<m;i++) printf("%d ",f[i]);
printf("%d\n",f[m]);
}
return ;
}

HDU 2489 Minimal Ratio Tree (DFS枚举+最小生成树Prim)的更多相关文章

  1. HDU 2489 Minimal Ratio Tree(dfs枚举+最小生成树)

    想到枚举m个点,然后求最小生成树,ratio即为最小生成树的边权/总的点权.但是怎么枚举这m个点,实在不会.网上查了一下大牛们的解法,用dfs枚举,没想到dfs还有这么个作用. 参考链接:http:/ ...

  2. HDU 2489 Minimal Ratio Tree (dfs+Prim最小生成树)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2489 Problem Description For a tree, which nodes and ...

  3. HDU 2489 Minimal Ratio Tree(暴力+最小生成树)(2008 Asia Regional Beijing)

    Description For a tree, which nodes and edges are all weighted, the ratio of it is calculated accord ...

  4. HDU 2489 Minimal Ratio Tree 最小生成树+DFS

    Minimal Ratio Tree Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  5. HDU 2489 Minimal Ratio Tree(prim+DFS)

    Minimal Ratio Tree Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  6. hdu 2489 Minimal Ratio Tree

    http://acm.hdu.edu.cn/showproblem.php?pid=2489 这道题就是n个点中选择m个点形成一个生成树使得生成树的ratio最小.暴力枚举+最小生成树. #inclu ...

  7. hdu2489 Minimal Ratio Tree dfs枚举组合情况+最小生成树

    #include <stdio.h> #include <set> #include <string.h> #include <algorithm> u ...

  8. Minimal Ratio Tree HDU - 2489

    Minimal Ratio Tree HDU - 2489 暴力枚举点,然后跑最小生成树得到这些点时的最小边权之和. 由于枚举的时候本来就是按照字典序的,不需要额外判. 错误原因:要求输出的结尾不能有 ...

  9. HDU2489 Minimal Ratio Tree 【DFS】+【最小生成树Prim】

    Minimal Ratio Tree Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

随机推荐

  1. LeetCode OJ Remove Duplicates from Sorted Array II

    Follow up for "Remove Duplicates":What if duplicates are allowed at most twice? For exampl ...

  2. UVALive 6672 Bonus Cards 概率dp

    题意呢 就是有两种售票方式 一种是icpc 一种是其他方式 icpc抢票成功的概率是其他方式的2倍…… 这时 一个人出现了 他通过内幕知道了两种抢票方式各有多少人 他想知道自己如果用icpc抢票成功的 ...

  3. java反射机制(访问私有字段和私有方法)

    来自:http://tutorials.jenkov.com/java-reflection/private-fields-and-methods.html 尽管我们通常认为通过JAVA的反射机制来访 ...

  4. startssl证书firefox支持配置

    解决Firefox不信任StartSSL证书问题 wget http://cert.startssl.com/certs/ca.pem wget http://cert.startssl.com/ce ...

  5. matlab里的nargin

    nargin是用来判断输入变量个数的函数,这样就可以针对不同的情况执行不同的功能.

  6. MATLAB将变量存储到EXCEL

    代码如下: d = {'Time','Temperature'; 12,98; 13,99; 14,97}; xlswrite('testdata2.xls', d, 1, 'E1') 运行如下:

  7. 【ADT】链表的基本C语言实现

    什么是抽象数据类型?首先,这一概念是软件开发人员在力求编写的代码健壮.易维护且可以复用的过程中产生的.英文是AbstractData Type.有人将其比作"抽象"的墙壁,&quo ...

  8. JavaScript “类”定义 继承 闭包 封装

    一.Javascript “类”: 类:在面向对象编程中,类(class)是对象(object)的模板,定义了同一组对象(又称"实例")共有的属性和方法. Javascript是一 ...

  9. Android中调用系统的相机和图库获取图片

    //--------我的主布局文件------很简单---------------------------------<LinearLayout xmlns:android="http ...

  10. 局部内部类访问方法的参数和局部变量必须是final的

    内部类的种类一共分为四种,我看其他几种内部类的时候思路都是很清晰的,然后我就碰到了这一条:"方法中的内部类可以访问外部类成员.对于方法的参数和局部变量,必须有final修饰才可以访问&quo ...