Minimal Ratio Tree

Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other)
Total Submission(s) : 12   Accepted Submission(s) : 7

Font: Times New Roman | Verdana | Georgia

Font Size: ← →

Problem Description

For a tree, which nodes and edges are all weighted, the ratio of it is calculated according to the following equation.

Given a complete graph of n nodes with all nodes and edges weighted, your task is to find a tree, which is a sub-graph of the original graph, with m nodes and whose ratio is the smallest among all the trees of m nodes in the graph.

Input

Input contains multiple test cases. The first line of each test case contains two integers n (2<=n<=15) and m (2<=m<=n), which stands for the number of nodes in the graph and the number of nodes in the minimal ratio tree. Two zeros end the input. The next line contains n numbers which stand for the weight of each node. The following n lines contain a diagonally symmetrical n×n connectivity matrix with each element shows the weight of the edge connecting one node with another. Of course, the diagonal will be all 0, since there is no edge connecting a node with itself.

All the weights of both nodes and edges (except for the ones on the diagonal of the matrix) are integers and in the range of [1, 100].

The figure below illustrates the first test case in sample input. Node 1 and Node 3 form the minimal ratio tree. 

Output

For each test case output one line contains a sequence of the m nodes which constructs the minimal ratio tree. Nodes should be arranged in ascending order. If there are several such sequences, pick the one which has the smallest node number; if there's a tie, look at the second smallest node number, etc. Please note that the nodes are numbered from 1 .

Sample Input

3 2
30 20 10
0 6 2
6 0 3
2 3 0
2 2
1 1
0 2
2 0
0 0

Sample Output

1 3
1 2
#include <iostream>
#include<cstdio>
#include<cstring>
#include<climits>
using namespace std; int a[],f[],p[];
int mp[][];
bool vis[];
int i,j,n,m;
double ans;
void prim() //最小生成树
{
bool vis[];
int dis[];
int sumnode,sumedge=,k;
memset(vis,,sizeof(vis));
vis[]=;
sumnode=p[a[]];
for(int i=;i<=m;i++) dis[i]=mp[a[]][a[i]];
for(int i=;i<m;i++)
{
int minn=INT_MAX;
for(int j=;j<=m;j++)
{
if (!vis[j] && dis[j]<minn)
{
minn=dis[j];
k=j;
}
}
vis[k]=;
sumedge+=minn;
sumnode+=p[a[k]];
for(int j=;j<=m;j++)
if (!vis[j] && dis[j]>mp[a[k]][a[j]])
dis[j]=mp[a[k]][a[j]];
}
double w=sumedge*1.0/sumnode;
if (w<ans) //把最优解存放在f数组中
{
ans=w;
for(int i=;i<=m;i++)
f[i]=a[i];
}
return;
}
void dfs(int k,int num)//dfs暴力枚举m个节点是哪几个存在a数组中
{
if (num==m)
{
prim();
return;
}
if (k>n) return; if (!vis[k])
{
vis[k]=;
a[num+]=k;
dfs(k+,num+);
vis[k]=;
}
dfs(k+,num);
return;
}
int main()
{
while(scanf("%d%d",&n,&m))
{
if (n== && m==) break;
for(i=;i<=n;i++) scanf("%d",&p[i]);
for(i=;i<=n;i++)
for(j=;j<=n;j++)
scanf("%d",&mp[i][j]);
memset(vis,,sizeof(vis));
ans=INT_MAX*1.0;
dfs(,);
for(i=;i<m;i++) printf("%d ",f[i]);
printf("%d\n",f[m]);
}
return ;
}

HDU 2489 Minimal Ratio Tree (DFS枚举+最小生成树Prim)的更多相关文章

  1. HDU 2489 Minimal Ratio Tree(dfs枚举+最小生成树)

    想到枚举m个点,然后求最小生成树,ratio即为最小生成树的边权/总的点权.但是怎么枚举这m个点,实在不会.网上查了一下大牛们的解法,用dfs枚举,没想到dfs还有这么个作用. 参考链接:http:/ ...

  2. HDU 2489 Minimal Ratio Tree (dfs+Prim最小生成树)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2489 Problem Description For a tree, which nodes and ...

  3. HDU 2489 Minimal Ratio Tree(暴力+最小生成树)(2008 Asia Regional Beijing)

    Description For a tree, which nodes and edges are all weighted, the ratio of it is calculated accord ...

  4. HDU 2489 Minimal Ratio Tree 最小生成树+DFS

    Minimal Ratio Tree Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  5. HDU 2489 Minimal Ratio Tree(prim+DFS)

    Minimal Ratio Tree Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  6. hdu 2489 Minimal Ratio Tree

    http://acm.hdu.edu.cn/showproblem.php?pid=2489 这道题就是n个点中选择m个点形成一个生成树使得生成树的ratio最小.暴力枚举+最小生成树. #inclu ...

  7. hdu2489 Minimal Ratio Tree dfs枚举组合情况+最小生成树

    #include <stdio.h> #include <set> #include <string.h> #include <algorithm> u ...

  8. Minimal Ratio Tree HDU - 2489

    Minimal Ratio Tree HDU - 2489 暴力枚举点,然后跑最小生成树得到这些点时的最小边权之和. 由于枚举的时候本来就是按照字典序的,不需要额外判. 错误原因:要求输出的结尾不能有 ...

  9. HDU2489 Minimal Ratio Tree 【DFS】+【最小生成树Prim】

    Minimal Ratio Tree Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

随机推荐

  1. VC中获取窗口控件相对客户区的坐标

    1: RECT rect; 2: GetDlgItem(item_id).GetWindowRect(&rect); 3: ScreenToClient(&rect);

  2. SSL+socket详解

    转自:http://hengstart.iteye.com/blog/842529 一.        SSL概述 SSL协议采用数字证书及数字签名进行双端实体认证,用非对称加密算法进行密钥协商,用对 ...

  3. mariaDB安装完成后设置root密码等初始化操作

    修改root密码1.以root身份在终端登陆(必须)2.输入 mysqladmin -u root -p password ex后面的 ex 是要设置的密码3.回车后出现 Enter password ...

  4. 修改select选中项

    /** * 设置select选中 * @param selectId select的id值 * @param checkValue 选中option的值 */ function setSelectCh ...

  5. linker command failed with exit code 1 (use -v to see

    转自 :http://www.reader8.cn/jiaocheng/20131022/2003334.html Undefined symbols for architecture http:// ...

  6. 十七、oracle 权限

    一.介绍这一部分我们主要看看oracle中如何管理权限和角色,权限和角色的区别在哪里.当刚刚建立用户时,用户没有任何权限,也不能执行任何操作.如果要执行某种特定的数据库操作,则必须为其授予系统的权限: ...

  7. adb shell am 的用法

    adb shell am instrument [options] <COMPONENT> 作用:启动对instrument实例的监视. 参数[options]: -e <key&g ...

  8. java本地方法

    一. 什么是Native Method   简单地讲,一个Native Method就是一个java调用非java代码的接口.一个Native Method是这样一个java的方法:该方法的实现由非j ...

  9. javaWEB总结(6):ServletRequest

    1.首先看ServletRequest的API javax.servlet Interface ServletRequest All Known Subinterfaces: HttpServletR ...

  10. vmware 命令行启动虚拟机

    在redhat enterprise 5.3安装了vmware workstation,如何用vmware 命令行启动指定虚拟机?/usr/bin/vmware[root@node0 ~]# /usr ...