最近研究NLP颇感兴趣,但由于比较懒,所以只好找来网上别人的比较好的博客,备份一下,也方便自己以后方便查找(其实,一般是不会再回过头来看的,嘿嘿 -_-!!)

代码自己重新写了一遍,所以就不把原文代码贴过来了。

1. 前向算法(摘自http://www.cnblogs.com/kaituorensheng/archive/2012/12/01/2797230.html)

隐马模型的评估问题即,在已知一个观察序列O=O1O2...OT,和模型μ=(A,B,π}的条件下,观察序列O的概率,即P(O|μ}

如果穷尽所有的状态组合,即S1S1...S1, S1S1...S2, S1S1...S3, ..., S3S3...S3。这样的话t1时刻有N个状态,t2时刻有N个状态...tT时刻有N个状态,这样的话一共有N*N*...*N= NT种组合,时间复杂度为O(NT),计算时,就会出现“指数爆炸”,当T很大时,简直无法计算这个值。为解决这一问题,Baum提出了前向算法。

归纳过程

首先引入前向变量αt(i):在时间t时刻,HMM输出序列为O1O2...OT,在第t时刻位于状态si的概率。

当T=1时,输出序列为O1,此时计算概率为P(O1|μ):假设有三个状态(如下图)1、2、3,输出序列为O1,有三种可能一是状态1发出,二是从状态2发出,三是从状态3发出。另外从状态1发出观察值O1得概率为b1(O1),从状态2发出观察值O1得概率为b2(O1),从状态3发出观察值O1得概率为b3(O1)。因此可以算出

P(O1|μ)= π1*b1(O1)+π2*b2(O1) +  π3*b3(O1)= α1(1) + α1(2) + α1(3)

当T=2时,输出序列为O1O2,此时计算概率为P(O1O2|μ):假设有三个状态(如下图)1、2、3,输出序列为O1,有三种可能一是状态1发出,二是从状态2发出,三是从状态3发出。另外从状态1发出观察值O2得概率为b1(O2),从状态2发出观察值O2得概率为b2(O2),从状态3发出观察值O2得概率为b3(O2)。

要是从状态1发出观察值O2,可能从第一时刻的1、2或3状态装换过来,要是从状态1转换过来,概率为α1(1)*a11*b1(O2),要是从状态2转换过来,概率为α1(2)*a21*b1(O2),要是从状态3转换过来,概率为α1(3)*a31*b1(O2),因此

P(O1O2,q2=s1|μ)= α1(1)*a11*b1(O2)  + α1(2)*a21*b1(O2) + α1(3)*a31*b1(O2)=α2(1)

      同理:P(O1O2,q2=s1|μ)= α1(1)*a12*b2(O2)  + α1(2)*a22*b2(O2) + α1(3)*a32*b2(O2)=α2(2)

P(O1O2,q2=s1|μ)= α1(1)*a13*b1(O2)  + α1(2)*a23*b3(O2) + α1(3)*a33*b3(O2)=α2(3)

所以:P(O1O2|μ)=P(O1O2,q2=s1|μ)+ P(O1O2,q2=s1|μ)+ P(O1O2,q2=s1|μ)

2(1) + α2(2) + α2(3)

以此类推。。。

前向算法

step1 初始化:α1(i) = πi*bi(O1), 1≤i≤N

step2 归纳计算:

step3 终结:

P(O|μ)=

时间复杂度

计算某时刻的某个状态的前向变量需要看前一时刻的N个状态,此时时间复杂度为O(N),每个时刻有N个状态,此时时间复杂度为N*O(N)=O(N2),又有T个时刻,所以时间复杂度为T*O(N2)=O(N2T)。

程序例证

前向算法计算P(O|M):

step1:α1(1) =π1*b1(red)=0.2*0.5=0.1          α1(2)=π2*b2(red)==0.4*0.4= 0.16          α1(3)=π3*b3(red)==0.4*0.7=0.21

step2:α2(1)=α1(1)*a11*b1(white) + α1(2)*a21*b1(white) + α1(3)*a31*b1(white)

...

step3:P(O|M) = α3(1)+α3(2)+α3(3)

2. 后向算法(摘自http://www.cnblogs.com/kaituorensheng/archive/2012/12/03/2800489.html)

对于HMM的评估问题,利用动态规划可以用前向算法,从前到后算出前向变量;也可以采用后向算法,从后到前算出后向变量。

先介绍后向变量βt(i):给定模型μ=(A,B,π),并且在时间 时刻t 状态为s的前提下,输出序列为Ot+1Ot+2...OT的概率,即

βt(i)=P(Ot+1Ot+2...OT|qt=si,μ)

归纳过程

    假设仍然有3个状态

    当t=T时,按照定义:时间t  状态q输出为OT+1......的概率,从T+1开始的输出是不存在的(因为T时刻是终止终止状态),即T之后是空,是个必然事件,因此βt(i)=1,1≤1≤N

当t=T-1时,

 βT-1(i)=P(OT|qT-1=si,μ) = ai1*b1(OT)*βT(1)  +  ai2*b2(OT)*βT(2)  +  ai3*b3(OT)*βT(3)

......

    当t=1时,

β1(1)=P(O2O3...OT|q2=s1,μ) = a11*b1(O2)*β2(1) + a12*b2(O2)*β2(2) + a13*b3(O2)*β2(3)

β1(2)=P(O2O3...OT|q2=s1,μ) = a21*b1(O2)*β2(1) + a22*b2(O2)*β2(2) + a23*b3(O2)*β2(3)

β1(3)=P(O2O3...OT|q2=s1,μ) = a31*b1(O2)*β2(1) + a32*b2(O2)*β2(2) + a33*b3(O2)*β2(3)

P(O1O2...OT|μ) =    

=   

=  

后向算法

step1 初始化:βT(i)=1, 1≤1≤N

step2 归纳计算:

    1≤t≤T-1, 1≤i≤N

step3 求终结和:

                   P(O|μ)=  

时间复杂度

计算某时刻在某个状态下的后向变量需要看后一时刻的N个状态,此时时间复杂度为O(N),每个时刻有N个状态,此时时间复杂度为N*O(N)=O(N2),又有T个时刻,所以时间复杂度为T*O(N2)=O(N2T)。

程序例证

后向算法

    计算P(O|M):

step1:β4(1) = 1          β4(2) = 1          β4(3) = 1

step2:β3(1) = β4(1)*a11*b1(white) + β4(2)*a12*b2(white) + β4(3)*a13*b3(white)

...

step3:P(O|M) = π11(1)*b1(O1) + π21(2)*b2(O1) + π31(3)*b3(O1)

3.前向-后向算法(摘自http://www.cnblogs.com/kaituorensheng/archive/2012/12/05/2803182.html)

重新回顾:

前向变量αt(i):在时刻t,在已知模型μ=(A,B,π)的条件下,状态处于si,输出序列为O102...Ot,前向变量为αt(i)

后向变量βt(i):在时刻t,在已知模型μ=(A,B,π)和状态处于si的条件下,输出序列为Ot+1Ot+2...OT,后向变量为βt(i)

公式推导:

P(O,qt=si|μ) = P(O1O2...OT, qt=si|μ)

=P(O1O2...Ot, qt=si,Ot+1Ot+2...OT|μ)

=P(O1O2...Ot, qt=si|μ) * P(Ot+1Ot+2...OT|O1O2...Ot, qt=si,μ)

=P(O1O2...Ot, qt=si|μ) * P(Ot+1Ot+2...OT|qt=si,μ)

t(i) *  βt(i)

P(O|μ)=

案例分析:

分析:

P(q4=s3|O,M) =  P(q4=s3, O|M)/P(O|M)

= P(O,q4=s3|M)/P(O|M)

= α4(3) *  β4(3)/  

HMM 前向后向算法(转)的更多相关文章

  1. HMM 自学教程(七)前向后向算法

    本系列文章摘自 52nlp(我爱自然语言处理: http://www.52nlp.cn/),原文链接在 HMM 学习最佳范例,这是针对 国外网站上一个 HMM 教程 的翻译,作者功底很深,翻译得很精彩 ...

  2. 隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率

    隐马尔科夫模型HMM(一)HMM模型 隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率 隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数(TODO) 隐马尔科夫模型HMM(四)维特比算法 ...

  3. 条件随机场CRF(二) 前向后向算法评估标记序列概率

    条件随机场CRF(一)从随机场到线性链条件随机场 条件随机场CRF(二) 前向后向算法评估标记序列概率 条件随机场CRF(三) 模型学习与维特比算法解码 在条件随机场CRF(一)中我们总结了CRF的模 ...

  4. 《统计学习方法》P179页10.22前向后向算法公式推导

  5. 隐马尔可夫(HMM)、前/后向算法、Viterbi算法

    HMM的模型  图1 如上图所示,白色那一行描述由一个隐藏的马尔科夫链生成不可观测的状态随机序列,蓝紫色那一行是各个状态生成可观测的随机序列 话说,上面也是个贝叶斯网络,而贝叶斯网络中有这么一种,如下 ...

  6. 隐马尔可夫模型HMM与维特比Veterbi算法(一)

    隐马尔可夫模型HMM与维特比Veterbi算法(一) 主要内容: 1.一个简单的例子 2.生成模式(Generating Patterns) 3.隐藏模式(Hidden Patterns) 4.隐马尔 ...

  7. HMM-前向后向算法

    基本要素 状态 \(N\)个 状态序列 \(S = s_1,s_2,...\) 观测序列 \(O=O_1,O_2,...\) \(\lambda(A,B,\pi)\) 状态转移概率 \(A = \{a ...

  8. HMM-前向后向算法(附python实现)

    基本要素 状态 \(N\)个 状态序列 \(S = s_1,s_2,...\) 观测序列 \(O=O_1,O_2,...\) \(\lambda(A,B,\pi)\) 状态转移概率 \(A = \{a ...

  9. HMM-前向后向算法(附代码)

    目录 基本要素 HMM三大问题 概率计算问题 前向算法 后向算法 前向-后向算法 基本要素 状态 \(N\)个 状态序列 \(S = s_1,s_2,...\) 观测序列 \(O=O_1,O_2,.. ...

随机推荐

  1. IEnumerable<T>转换为IList<SelectListItem>

    扩展方法IEnumerable<T>转换为IList<SelectListItem> ,提供@Html.DropDownList使用   由于在MVC中经常会使用到@Html. ...

  2. innerText与innerHTML的区别

    innerText与innerHTML的区别:1.innerText将所有文本内容作为普通的文本2.innerHTML会识别文本内容中是否含有html标签,它能够把html标签的效果显示出来3.inn ...

  3. 关于HTTP头标

    对于HTTP中的头字段,我表示真的好麻烦,特找来一段资料共享.希望能对大家有用. HTTP的头域包括通用头,请求头,响应头和实体头四个部分.每个头域由一个域名,冒号(:)和域值三部分组成.域名是大小写 ...

  4. E-mail Composition and Decoding

    一.邮件涉及协议及本文说明1. 协议 SMTP(Simple Mail Transfer Protocal) 简单邮件传输协议,用于发送邮件. MIME(Mutipurpose Internet Ma ...

  5. SQL Server跨网段(跨机房)FTP复制

    SQL Server跨网段(跨机房)FTP复制 2013-09-24 17:53 by 听风吹雨, 273 阅读, 0 评论, 收藏, 编辑 一. 背景 搭建SQL Server复制的时候,如果网络环 ...

  6. 迷你MVVM框架 avalonjs 0.95发布

    迷你MVVM框架 avalonjs 0.95发布 本版本最主要的改进是ms-with 深层绑定的实现,至少,avalon1.0所有重要的feature已经开发完毕,之后就是小补小漏,性能优化了. ms ...

  7. Query插件

    推荐一些常用感觉不错的jQuery插件 JQuery插件繁多,下面是个人在工作和学习中用到感觉不错的,特此记录. UI: jquery UI(官方的UI插件,很好很强大功能完备,灵活性很强,有十几套主 ...

  8. WP自定义字体

    IOS7的数字真的很好看啊,于是想放在自己的应用中.在网上找了下,发现这个字体叫HelveticaNeueLTPro-UltLt,于是随便在某个字体网站下了这个字体.拖到项目里换字体,但是,悲剧开始了 ...

  9. [置顶] (游戏编程-04)JAVA版雷电(奇迹冬瓜)

    注:运行环境必须要JDK 先为大家送上游戏截图 接着在最后有代码下载的链接地址 1.游戏开始动画和主界面 关卡与boss 结束画面 代码下载地址 点击打开链接

  10. 通用高性能 Windows Socket 组件 HP-Socket v2.2.2 更新发布

    HP-Socket 是一套通用的高性能 Windows Socket 组件包,包含服务端组件(IOCP 模型)和客户端组件(Event Select 模型),广泛适用于 Windows 平台的 TCP ...