leetcode 之 Unique Paths
Unique Paths
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?

Above is a 3 x 7 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
思路:典型的动态规划,dp[i][j]表示到matrix[i][j]的路径个数。则dp[i][j] = dp[i-1][j] + dp[i][j-1]。
int uniquePaths(int m, int n) {
if(m <=0 || n <= 0)return 0;
vector<vector<int> > dp(m);
int i,j;
for(i=0;i<m;i++)
{
vector<int> tmp(n,1);//至少一条
dp[i] = tmp;
}
for(i = 1;i < m;i++)
{
for(j = 1;j < n;j++)
{
dp[i][j] = dp[i-1][j] + dp[i][j-1];
}
}
return dp[m-1][n-1];
}
Unique Paths II
Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1 and 0 respectively
in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[
[0,0,0],
[0,1,0],
[0,0,0]
]
The total number of unique paths is 2.
Note: m and n will be at most 100.
思路:和上面类似,仅仅是当obstacleGrid[i][j] == 0时要把dp[i][j]=0。表示此路不通,初始化时也要注意
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid) {
int rows = obstacleGrid.size();
if(rows <= 0)return 0;
int cols = obstacleGrid[0].size();
if(cols <= 0)return 0;
vector<vector<int> > dp(rows);
int i,j;
for(i = 0;i < rows;i++)
{
vector<int> tmp(cols);
dp[i] = tmp;
}
dp[0][0] = obstacleGrid[0][0] == 0 ? 1 : 0;
for(i = 1;i < rows;i++)dp[i][0] = obstacleGrid[i][0] == 0 ? dp[i-1][0] : 0;//当为0时,不能简单的初始化为1。要初始化为前面的值,由于可能被前面挡住了
for(j = 1;j < cols;j++)dp[0][j] = obstacleGrid[0][j] == 0 ?
dp[0][j-1] : 0;
for(i = 1;i < rows;i++)
{
for(j = 1;j < cols;j++)
{
dp[i][j] = obstacleGrid[i][j] == 0 ? dp[i-1][j] + dp[i][j-1] : 0;
}
}
return dp[rows-1][cols-1];
}
};
public:
int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid) {
int rows = obstacleGrid.size();
if(rows <= 0)return 0;
int cols = obstacleGrid[0].size();
if(cols <= 0)return 0;
vector<vector<int> > dp(rows);
int i,j;
for(i = 0;i < rows;i++)
{
vector<int> tmp(cols);
dp[i] = tmp;
}
dp[0][0] = obstacleGrid[0][0] == 0 ? 1 : 0;
for(i = 1;i < rows;i++)dp[i][0] = obstacleGrid[i][0] == 0 ? dp[i-1][0] : 0;//当为0时,不能简单的初始化为1。要初始化为前面的值,由于可能被前面挡住了
for(j = 1;j < cols;j++)dp[0][j] = obstacleGrid[0][j] == 0 ? dp[0][j-1] : 0;
for(i = 1;i < rows;i++)
{
for(j = 1;j < cols;j++)
{
dp[i][j] = obstacleGrid[i][j] == 0 ? dp[i-1][j] + dp[i][j-1] : 0;
}
}
return dp[rows-1][cols-1];
}
};
版权声明:本文博客原创文章,博客,未经同意,不得转载。
leetcode 之 Unique Paths的更多相关文章
- LeetCode 63. Unique Paths II不同路径 II (C++/Java)
题目: A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). ...
- [LeetCode] 62. Unique Paths 唯一路径
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The ...
- LeetCode 62. Unique Paths(所有不同的路径)
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The ...
- [LeetCode] 63. Unique Paths II_ Medium tag: Dynamic Programming
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The ...
- [Leetcode Week12]Unique Paths II
Unique Paths II 题解 原创文章,拒绝转载 题目来源:https://leetcode.com/problems/unique-paths-ii/description/ Descrip ...
- [Leetcode Week12]Unique Paths
Unique Paths 题解 原创文章,拒绝转载 题目来源:https://leetcode.com/problems/unique-paths/description/ Description A ...
- [LeetCode] 63. Unique Paths II 不同的路径之二
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The ...
- [LeetCode] 62. Unique Paths 不同的路径
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The ...
- leetcode 62. Unique Paths 、63. Unique Paths II
62. Unique Paths class Solution { public: int uniquePaths(int m, int n) { || n <= ) ; vector<v ...
- 【leetcode】Unique Paths
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The ...
随机推荐
- Echache整合Spring缓存实例讲解(转)
林炳文Evankaka原创作品.转载请注明出处http://blog.csdn.net/evankaka 摘要:本文主要介绍了EhCache,并通过整合Spring给出了一个使用实例. 一.EhCac ...
- 解决apache+tomcatserver环境中文乱码的问题
在使用apache做转发服务器时,碰到了中文乱码的问题. 说说解决思路: 1.通常乱码是由于编码不统一造成的.所以要先推断是不是由于编码问题造成的,假设是的话,那统一编码就能够去解决. 2.tomca ...
- poj Firing(最大重量封闭图)
Firing 题目: 要解雇一些人,而解雇的这些人假设人跟他有上下级的关系,则跟他有关系的人也要一起解雇.每一个人都会创造一定的价值,要求你求出在最大的获利下.解雇的人最小. 算法分析: 在这之前要知 ...
- javascript的位操作、整数、二进制
位与(x&y):对操作数进行二进制与的操作,如果两个操作数的某一位两个都为1,将对应的结果位设为1. 0x0007 & 0x0003 = 0x0003 \ 一个小型年老棕色的狗:64 ...
- 开源Math.NET基础数学类库使用(03)C#解析Matlab的mat格式
原文:[原创]开源Math.NET基础数学类库使用(03)C#解析Matlab的mat格式 开源Math.NET基础数学类库使用系列文章总目录: 1.开源.NET基础数学计算组件Math.NET( ...
- spring集成quartz
spring集成quartz 注意:出现异常"Caused by: java.lang.IncompatibleClassChangeError: class org.springframe ...
- Atitit. 拉开拉链zip文件 最佳实践实施 java c# .net php
Atitit. 拉开拉链zip文件 的实现最佳实践 java c# .net php 1. Jdk zip 跟apache ant zip 1 2. Apache Ant包进行ZIP文件压缩,upzi ...
- 在SSMS里查看TDS数据包内容
原文:在SSMS里查看TDS数据包内容 在SSMS里查看TDS数据包内容 摘抄自<SQLSERVER2012实施与管理实战指南> 要具体查看TDS数据库的内容,我们可以: 用NETWORK ...
- 【Android基础】AndroidManifest常用权限permission整理
android.permission.ACCESS_COARSE_LOCATION 通过WiFi或移动基站的方式获取用户错略的经纬度信息,定位精度大概误差在30~1500米 android.permi ...
- 简单实现Android平台多语言
这里,我们认识到两种语言.中国简体和繁体中国. 在res文件建议两个文件夹 values-zh-rCN values-zh-rTW 两个目录下都有一个strings.xml文件. 两个同名文件的字符串 ...