基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题
 收藏
 关注
输入2个正整数A,B,求A与B的最大公约数。

 
Input
2个数A,B,中间用空格隔开。(1<= A,B <= 10^9)
Output
输出A与B的最大公约数。
Input示例
30 105
Output示例
15

代码:

 #include <vector>
#include <map>
#include <set>
#include <algorithm>
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <string>
#include <cstring>
#include <queue>
#include <stack>
using namespace std; typedef long long ll; ll gcd(ll a,ll b)
{
if(b==)
return a;
return gcd(b,a%b);
} int main()
{
ll a,b;
scanf("%lld%lld",&a,&b);
printf("%lld\n",gcd(a,b));
return ;
}
基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题
 收藏
 关注
输入2个正整数A,B,求A与B的最小公倍数。

 
Input
2个数A,B,中间用空格隔开。(1<= A,B <= 10^9)
Output
输出A与B的最小公倍数。
Input示例
30 105
Output示例
210

代码:

 #include <vector>
#include <map>
#include <set>
#include <algorithm>
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <string>
#include <cstring>
#include <queue>
#include <stack>
using namespace std; typedef long long ll; ll gcd(ll a,ll b)
{
if(b==)
return a;
return gcd(b,a%b);
} ll lcm(ll a,ll b)
{
return a*b/gcd(a,b);
} int main()
{
ll a,b;
scanf("%lld%lld",&a,&b);
printf("%lld\n",lcm(a,b));
return ;
}

1. 定义

最大公约数,也称最大公因数、最大公因子,指两个或多个整数共有约数中最大的一个。求最大公约数有多种方法,常见的有质因数分解法、短除法、辗转相除法、更相减损法。 
最小公倍数(Least Common Multiple,缩写L.C.M.),如果有一个自然数a能被自然数b整除,则称a为b的倍数,b为a的约数,对于两个整数来说,指该两数共有倍数中最小的一个。计算最小公倍数时,通常会借助最大公约数来辅助计算。

2. 辗转相除法(欧几里德算法)求最大公约数

核心: 
把上一轮有余数的除法计算中, 除数变为下一轮计算的被除数, 余数变为下一轮计算的除数, 一直这样计算下去, 直到最后一次计算余数为零, 在最后一轮计算中的被除数,即为所求的最大公约数

3. 最小公倍数

最小公倍数常常借助于最大公约数的计算——最小公倍数等于两数之积除以其最大公约数

gcd&&lcm的更多相关文章

  1. Mathematics:GCD & LCM Inverse(POJ 2429)

    根据最大公约数和最小公倍数求原来的两个数 题目大意,不翻译了,就是上面链接的意思. 具体思路就是要根据数论来,设a和b的GCD(最大公约数)和LCM(最小公倍数),则a/GCD*b/GCD=LCM/G ...

  2. POJ 2429 GCD & LCM Inverse (Pollard rho整数分解+dfs枚举)

    题意:给出a和b的gcd和lcm,让你求a和b.按升序输出a和b.若有多组满足条件的a和b,那么输出a+b最小的.思路:lcm=a*b/gcd   lcm/gcd=a/gcd*b/gcd 可知a/gc ...

  3. [POJ 2429] GCD & LCM Inverse

    GCD & LCM Inverse Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 10621   Accepted: ...

  4. POJ 2429 GCD & LCM Inverse(Pollard_Rho+dfs)

    [题目链接] http://poj.org/problem?id=2429 [题目大意] 给出最大公约数和最小公倍数,满足要求的x和y,且x+y最小 [题解] 我们发现,(x/gcd)*(y/gcd) ...

  5. UVA - 11388 GCD LCM

    II U C   ONLINE   C ON TEST  Problem D: GCD LCM Input: standard input Output: standard output The GC ...

  6. hdu-3071 Gcd & Lcm game---质因数分解+状态压缩+线段树

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3071 题目大意: 给定一个长度为n的序列m次操作,操作的种类一共有三种 查询 L :查询一个区间的所 ...

  7. [ 9.13 ]CF每日一题系列—— 340A GCD & LCM

    Description: [ 着实比较羞愧,都想着去暴力,把算法(方法)也忘了] A只涂x,2x,3x……,B只涂y,2y,3y……问你A和B共同涂的墙的个数 Solution: 就是求x和y的lcm ...

  8. 【HDU 5382】 GCD?LCM! (数论、积性函数)

    GCD?LCM! Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total ...

  9. 数论入门2——gcd,lcm,exGCD,欧拉定理,乘法逆元,(ex)CRT,(ex)BSGS,(ex)Lucas,原根,Miller-Rabin,Pollard-Rho

    数论入门2 另一种类型的数论... GCD,LCM 定义\(gcd(a,b)\)为a和b的最大公约数,\(lcm(a,b)\)为a和b的最小公倍数,则有: 将a和b分解质因数为\(a=p1^{a1}p ...

  10. 数论3——gcd&&lcm

    gcd(a, b),就是求a和b的最大公约数 lcm(a, b),就是求a和b的最小公倍数 然后有个公式 a*b = gcd * lcm     ( gcd就是gcd(a, b), ( •̀∀•́ ) ...

随机推荐

  1. http与https与socket tcp/IP与UDP 协议等

    网络由下往上分为:   物理层--                       数据链路层-- 网络层--                       IP协议 传输层--               ...

  2. C语言中的函数指针

    C语言中的函数指针 函数指针的概念:   函数指针是一个指向位于代码段的函数代码的指针. 函数指针的使用: #include<stdio.h> typedef struct (*fun_t ...

  3. php zip文件内容比較类

    php zip 文件比較类,比較两个zip文件的内容,返回新增,删除,及同样的文件列表.临时仅仅支持单层. 需求:上传一个zip文件,zip内有非常多图片文件.须要对图片文件进行一系列非常耗时的处理. ...

  4. HTML——博客页面布局

    HTML文件 <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/htm ...

  5. SecureCRT使用提示

    一旦itpub我写上面,我不知道这个博客的背后,我们无法上传和修改内容.好恼火啊! 原文链接:SecureCRT的几个使用方法设置 在原文的基础上,再补充几个功能: 1.最好将全部设置定制在Globa ...

  6. html/css获得第一章

    1.基本教程来学习 大概3天课余时间阅读下面的两个教程. HTML文字教程 CSS文字教程 2.练习 看完教程后.做第一练习时,总结例如以下: 1)div居中 须要设置属性:margin-left:a ...

  7. [LeetCode] Regular Expression Matching [6]

    称号: Implement regular expression matching with support for '.' and '*'. '.' Matches any single chara ...

  8. ECharts SSH+JQueryAjax+Json+JSP在数据库中的数据来填充ECharts在

    1导入包.设定SSH框架. 进口JQuery的JS包.<script src="JS/jquery-1.7.1.js"></script> 导入EChart ...

  9. android中怎么把自己须要的app启动图标集中到一个弹出框中

    先看效果图 这个是我们自己的apk点击之后的效果 下边是布局文件 activity_main.xml主布局文件 <LinearLayout xmlns:android="http:// ...

  10. IOS-Plist文件存储(1)

    1.什么是一个文件系统? IOS每个应用程序都有自己的文件系统.并且有一个相应的接入,一般分 ~/Documents/ ~/tmp/ ~/Library/Caches/ ~/Library/Prefe ...