竞价广告系统-逻辑回归优化方法-L-BFGS
逻辑回归优化方法-L-BFGS
逻辑回归的优化方法是一个经典的问题,如果我们把它视为一个最大熵模型,那么我们知道最早的优化方法是IIS,这个方法就不细讲了,因为它速度很慢。后来发现在最优化领域中非常常用的l-BFGS方法对于Logistic Regression的收敛速度优化是不错的。
l-BFGS方法是Quasi-Newton方法中的一种,我想从工程角度谈一下我的看法,上次我们谈到在分布式环境下进行模型的优化,无非有两种思路,一,如果数据是mixture of exponent family的分布,用mapper进行E步骤,reducer进行M步骤进行迭代优化,这种是比较简单的方法。如果不是mixture of exponent family的情况,就用基于导数,基于梯度的方法优化。但基于梯度的方法有一个问题,比如有两次函数中,函数等高线是一个非常扁的椭圆,那么基于梯度的收敛速度是很慢的。在实际的工程问题中,这种病态的函数是很常见的,因为在工程中有成千上万的特征,它们的物理意义有时候是不明确的,无法统一的对它们进行归一化处理,因此无法用一阶导数的方法很快的求解,那么我们可以用二阶的导数,根据前两次的路径,大概求得它两次的求值是什么,这样就可以校正它的方向,使得它快速收敛。所以Quasi-Newton在工程中是必要的方法,而不只是优化的方法。那么这种方法与Newton法有什么不同呢?在Newton法中要求Hession矩阵是正定的,但在实际问题中,很难保证是正定的。BFGS的思路是用函数值和特征的变化量来近似Hession矩阵,以保证正定性,并减少计算量。Hession阵是通过前几步的路径,估计出一个二阶导数,它有不同的估计方法,BFGS就是其中一种估计方法。
L(imited memory)-BFGS它是为了解决空间复杂度的问题,虽然Hession阵可以估计可以计算,但它的规模太大,对于刚才说的点击率预测问题,它可能有上亿个特征,而Hession是一个n*n 的矩阵。而在L-BFGS,它是对Hession进行近似,将它拆为一个单位阵加上三个小的矩阵之积,假设选择一个比较小的k值以近似前面的Hession阵。它将BFGS的O(n*n)空间复杂度降到了O(n*k),k一般是10以内的数。

l-BFGS在特征量大时比BFGS实用,可以非常容易用map/reduce实现分布式求解,mapper求部分数据上的梯度,reducer求和并更新参数。它与梯度法实现复杂一点的地方在,它需要保存前几次的模型,才能计算当前迭代的更新值。
l-BFGS是对Logistic Regression优化的最基本的一个方法,了解它之后对优化的框架和思路会有一个比较清晰的线索。
竞价广告系统-逻辑回归优化方法-L-BFGS的更多相关文章
- 竞价广告系统-ZooKeeper介绍
ZooKeeper介绍 为了讲述的完整性,介绍一下ZooKeeper.ZooKeeper在Index和Ad Server里使用比较多,虽然它可能没有google的Chubby好,但它是开源的工具.举一 ...
- 机器学习简要笔记(五)——Logistic Regression(逻辑回归)
1.Logistic回归的本质 逻辑回归是假设数据服从伯努利分布,通过极大似然函数的方法,运用梯度上升/下降法来求解参数,从而实现数据的二分类. 1.1.逻辑回归的基本假设 ①伯努利分布:以抛硬币为例 ...
- 通俗地说逻辑回归【Logistic regression】算法(二)sklearn逻辑回归实战
前情提要: 通俗地说逻辑回归[Logistic regression]算法(一) 逻辑回归模型原理介绍 上一篇主要介绍了逻辑回归中,相对理论化的知识,这次主要是对上篇做一点点补充,以及介绍sklear ...
- 线性模型之逻辑回归(LR)(原理、公式推导、模型对比、常见面试点)
参考资料(要是对于本文的理解不够透彻,必须将以下博客认知阅读,方可全面了解LR): (1).https://zhuanlan.zhihu.com/p/74874291 (2).逻辑回归与交叉熵 (3) ...
- 一小部分机器学习算法小结: 优化算法、逻辑回归、支持向量机、决策树、集成算法、Word2Vec等
优化算法 先导知识:泰勒公式 \[ f(x)=\sum_{n=0}^{\infty}\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n \] 一阶泰勒展开: \[ f(x)\approx ...
- kaggle信用卡欺诈看异常检测算法——无监督的方法包括: 基于统计的技术,如BACON *离群检测 多变量异常值检测 基于聚类的技术;监督方法: 神经网络 SVM 逻辑回归
使用google翻译自:https://software.seek.intel.com/dealing-with-outliers 数据分析中的一项具有挑战性但非常重要的任务是处理异常值.我们通常将异 ...
- 机器学习方法(五):逻辑回归Logistic Regression,Softmax Regression
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术.应用感兴趣的同学加入. 前面介绍过线性回归的基本知识, ...
- 互联网DSP广告系统架构及关键技术解析
互联网DSP广告系统架构及关键技术解析 宿逆 关注 1.9 2017.10.09 17:05* 字数 8206 阅读 10271评论 2喜欢 60 广告和网络游戏是互联网企业主要的盈利模式 广告是广告 ...
- DSP广告系统架构及关键技术解析(转)
广告和网络游戏是互联网企业主要的盈利模式 广告是广告主通过媒体以尽可能低成本的方式与用户达成接触的商业行为.也就是说按照某种市场意图接触相应人群,影响其中潜在用户,使其选择广告主产品的几率增加,或对广 ...
随机推荐
- 了解你的家公家IP
我们总是在不在家的时候,须要訪问我们的电脑或设备,因为大多数人拥有来自ISP的动态IP,我们能够做一个小型设备来给我们的Android手机发送一个简单的通知,这样我们就能够总有IP用了,有 ...
- TFTP server组态
TFTP server组态 2014-10-31北京海淀区 张俊浩 一.TFTP(Trivial File Transfer Protocol,简单文件传输协议或称小型文件传输协议) 是一种简化的文 ...
- AngularJS之使用控制器封装业务逻辑
AngularJS之使用控制器封装业务逻辑 控制器的作用 我们知道,在AngularJS中,实现数据绑定的核心是scope对象.那么控制器又有什么用呢? 简单地说,没有控制器/controller,我 ...
- code forces 148D Bag of mice (概率DP)
time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standa ...
- 在SQL Server中对视图进行增删改
原文:在SQL Server中对视图进行增删改 Lesktop开源IM发布以后,有一些网友问及如何在嵌入IM后与自己网站的用户系统整合(即如何让嵌入的IM直接使用网站原有的用户数据库,而不需要将已有的 ...
- 多线程之线程池Executor应用
JDK1.5之后,提供了自带的线程池,以便我们更好的处理线程并发问题. Executor类给我提供了多个线程池创建的方式: 创建固定的线程池 Executors.newFixedThreadPool( ...
- Eclipse生成jsp 如何将GB18030 改成默认UTF-8
前两天面试被问到了struts的问题,好久没用了准备复习下,用eclipse创建一个maven项目的时候发现创建的jsp文件都是GB18030编码的,如何更改为UTF-8呢,其实很简单,给各位分享一下 ...
- PHP调用Webservice实例
原文 PHP调用Webservice实例 NuSoap是PHP环境下的WebService编程工具,用于创建或调用WebService.它是一个开源软件,是完全采用PHP语言编写的.通过HTTP收发S ...
- curl_redir_exec()函数
function curl_redir_exec($ch,$debug="") { static $curl_loops = 0; static $curl_max_loops = ...
- Ajax跨域原理及JQuery中的实现
浅析Ajax跨域原理及JQuery中的实现分析 AJAX 的出现使得网页可以通过在后台与服务器进行少量数据交换,实现网页的局部刷新.但是出于安全的考虑,ajax不允许跨域通信.如果尝试从不同的域请 ...