前言

疫情当下,出入医院等公共场所都被要求佩戴口罩。这篇博客将会介绍如何使用 Yolov4,训练一个人脸口罩检测模型(使用 Yolov4 的原因是目前只复现到了 v4 ),代码地址为 https://github.com/zhiyiYo/yolov4

Yolov4

Yolov4 的神经网络结构相比 Yolov3 变化不是很大,主要更换了激活函数为 Mish,增加了 SPP 块和 PAN 结构(图源 《yolo系列学习笔记----yolov4(SPP原理)》)。

感觉 Yolov4 最大的特点就是使用了一大堆的 Trick,比如数据增强方面使用了马赛克数据增强、Mixup 数据增强,将定位损失函数更换为 CIOU 损失。论文中提到了很多的 Trick,我的代码中没有全部复现,不过在 VOC2012 数据集训练了 160 个 epoch 之后 mAP 也能达到 83%,效果还是不错的。

可以在终端使用下述指令下载 Yolov4 的代码:

git clone https://github.com/zhiyiYo/yolov4.git

人脸口罩数据集

网上可以找到很多人脸口罩数据集,这里使用的是 AIZOOTech 提供的数据集。由于这个数据集的结构和 Pascal VOC 数据集不一样,所以重新组织一下数据集,并且修复和移除了数据集中的非法标签,可以在 Kaggle 上下载此数据集。目前这个数据集包含 6130 张训练图像,1839 张测试图像,对于 Yolov4 的训练来说应该是绰绰有余的。下载完数据集将其解压到 data 文件夹下。

在训练之前,我们需要使用 K-means 聚类算法对训练集中的边界框进行聚类,对于 416×416 的输入图像,聚类结果如下:

anchors = [
[[100, 146], [147, 203], [208, 260]],
[[26, 43], [44, 65], [65, 105]],
[[4, 8], [8, 15], [15, 27]]
]

训练神经网络

训练目标检测模型一般都需要加载预训练的主干网络的权重,可以从谷歌云盘下载预训练好的权重 CSPDarknet53.pth 并将其放在 model 文件夹下。这里给出训练所用的代码 train.py,使用 python train.py 就能开始训练。模型会先冻结训练上 50 个 epoch,接着解冻训练 110 个 epoch:

# coding:utf-8
from net import TrainPipeline, VOCDataset
from utils.augmentation_utils import YoloAugmentation, ColorAugmentation # 训练配置
config = {
"n_classes": len(VOCDataset.classes),
"image_size": 416,
"anchors": [
[[100, 146], [147, 203], [208, 260]],
[[26, 43], [44, 65], [65, 105]],
[[4, 8], [8, 15], [15, 27]]
],
"darknet_path": "model/CSPdarknet53.pth",
"lr": 1e-2,
"batch_size": 8,
"freeze_batch_size": 16,
"freeze": True,
"freeze_epoch": 50,
"max_epoch": 160,
"start_epoch": 0,
"num_workers": 4,
"save_frequency": 10,
"no_aug_ratio": 0
} # 加载数据集
root = 'data/FaceMaskDataset/train'
dataset = VOCDataset(
root,
'all',
transformer=YoloAugmentation(config['image_size']),
color_transformer=ColorAugmentation(config['image_size']),
use_mosaic=True,
use_mixup=True,
image_size=config["image_size"]
) if __name__ == '__main__':
train_pipeline = TrainPipeline(dataset=dataset, **config)
train_pipeline.train()

测试神经网络

训练完使用 python evals.py 可以测试所有保存的模型,evals.py 代码如下:

# coding:utf-8
import json
from pathlib import Path import matplotlib as mpl
import matplotlib.pyplot as plt from net import EvalPipeline, VOCDataset mpl.rc_file('resource/theme/matlab.mplstyle') # 载入数据集
root = 'data/FaceMaskDataset/val'
dataset = VOCDataset(root, 'all')
anchors = [
[[100, 146], [147, 203], [208, 260]],
[[26, 43], [44, 65], [65, 105]],
[[4, 8], [8, 15], [15, 27]]
] # 列出所有模型,记得修改 Yolo 模型文件夹的路径
model_dir = Path('model/2022-10-05_22-59-44')
model_paths = [i for i in model_dir.glob('Yolo_*')]
model_paths.sort(key=lambda i: int(i.stem.split("_")[1])) # 测试所有模型
mAPs = []
iterations = []
for model_path in model_paths:
iterations.append(int(model_path.stem[5:]))
ep = EvalPipeline(model_path, dataset, anchors=anchors, conf_thresh=0.001)
mAPs.append(ep.eval()*100) # 保存数据
with open('eval/mAPs.json', 'w', encoding='utf-8') as f:
json.dump(mAPs, f) # 绘制 mAP 曲线
fig, ax = plt.subplots(1, 1, num='mAP 曲线')
ax.plot(iterations, mAPs)
ax.set(xlabel='iteration', ylabel='mAP', title='mAP curve')
plt.show()

得到的 mAP 曲线如下图所示,在第 120 个 epoch 达到最大值 94.14%:

下面使用一张真实图像看看训练效果如何,运行 demo.py

# coding:utf-8
from net import VOCDataset
from utils.detection_utils import image_detect # 模型文件和图片路径
model_path = 'model/Yolo_120.pth'
image_path = 'resource/image/三上老师.jpg' # 检测目标
anchors = [
[[100, 146], [147, 203], [208, 260]],
[[26, 43], [44, 65], [65, 105]],
[[4, 8], [8, 15], [15, 27]]
]
image = image_detect(model_path, image_path, VOCDataset.classes, anchors=anchors, conf_thresh=0.5)
image.show()

不错,效果非常好 :

后记

至此,介绍完了训练 Yolov4 人脸口罩检测模型的过程,代码放在了 https://github.com/zhiyiYo/yolov4,以上~~

如何使用 Yolov4 训练人脸口罩检测模型的更多相关文章

  1. K210,yolo,face_mask口罩检测模型训练及其在K210,kd233上部署

    前段时间考研,再加上工作,时间很紧,一直没有更新博客,这几天在搞k210的目标检测模型,做个记录,遇到问题可以添加qq522414928或添加微信13473465975,共同学习 首先附上github ...

  2. PyTorch专栏(八):微调基于torchvision 0.3的目标检测模型

    专栏目录: 第一章:PyTorch之简介与下载 PyTorch简介 PyTorch环境搭建 第二章:PyTorch之60分钟入门 PyTorch入门 PyTorch自动微分 PyTorch神经网络 P ...

  3. 微调torchvision 0.3的目标检测模型

    微调torchvision 0.3的目标检测模型 本文将微调在 Penn-Fudan 数据库中对行人检测和分割的已预先训练的 Mask R-CNN 模型.它包含170个图像和345个行人实例,说明如何 ...

  4. 人脸检测及识别python实现系列(5)——利用keras库训练人脸识别模型

    人脸检测及识别python实现系列(5)——利用keras库训练人脸识别模型 经过前面稍显罗嗦的准备工作,现在,我们终于可以尝试训练我们自己的卷积神经网络模型了.CNN擅长图像处理,keras库的te ...

  5. 基于TensorFlow Object Detection API进行迁移学习训练自己的人脸检测模型(二)

    前言 已完成数据预处理工作,具体参照: 基于TensorFlow Object Detection API进行迁移学习训练自己的人脸检测模型(一) 设置配置文件 新建目录face_faster_rcn ...

  6. dlib人脸关键点检测的模型分析与压缩

    本文系原创,转载请注明出处~ 小喵的博客:https://www.miaoerduo.com 博客原文(排版更精美):https://www.miaoerduo.com/c/dlib人脸关键点检测的模 ...

  7. Python 3 利用 Dlib 19.7 和 sklearn机器学习模型 实现人脸微笑检测

    0.引言  利用机器学习的方法训练微笑检测模型,给一张人脸照片,判断是否微笑:   使用的数据集中69张没笑脸,65张有笑脸,训练结果识别精度在95%附近: 效果: 图1 示例效果 工程利用pytho ...

  8. ssd物体检测模型训练和测试总结

    参考网址:github:https://github.com/naisy/realtime_object_detection 2018.10.16ssd物体检测总结:切记粗略地看一遍备注就开始训练模型 ...

  9. 用keras实现人脸关键点检测(2)

    上一个代码只能实现小数据的读取与训练,在大数据训练的情况下.会造内存紧张,于是我根据keras的官方文档,对上一个代码进行了改进. 用keras实现人脸关键点检测 数据集:https://pan.ba ...

随机推荐

  1. java的访问权限protected和default

    protected和default的区别 第一点:在同一个包中,protected和default表现一致,即,当main方法所在的类和使用了protected与default修饰属性.方法的类在同一 ...

  2. vue使用vuex报错 "export 'watch' was not found in 'vue'

    问题 安装Vuex后报错"export 'watch' was not found in 'vue' 解决方法 如果你的vue版本是 2.X ,将vuex升到 3.X.X 就能够解决 npm ...

  3. 关于 CMS 垃圾回收器,你真的懂了吗?

    大家好,我是树哥. 前段时间有个小伙伴去面试,被问到了 CMS 垃圾回收器的详细内容,没答出来.实际上,CMS 垃圾回收器是回收器历史上很重要的一个节点,其开启了 GC 回收器关注 GC 停顿时间的历 ...

  4. c语言中的gets和fgets的使用差别

    gets和fgets的差别 2022年6月30日 #include<stdio.h> #include<string.h> #define STLEN 8 int main(i ...

  5. 项目开发中Maven的单向依赖-2022新项目

    一.业务场景 工作多年,在真实的项目开发中经常会遇到将一个项目拆分成多个工程的情况,比如将一个真实的项目拆分成controller层,service层, dao层,common公共服务层等等.这样拆分 ...

  6. Python3.7+jieba(结巴分词)配合Wordcloud2.js来构造网站标签云(关键词集合)

    原文转载自「刘悦的技术博客」https://v3u.cn/a_id_138 其实很早以前就想搞一套完备的标签云架构了,迫于没有时间(其实就是懒),一直就没有弄出来完整的代码,说到底标签对于网站来说还是 ...

  7. 我与Apache DolphinScheduler社区的故事

    我与DolphinScheduler社区的故事 Apache DolphinScheduler 是一个开源的分布式去中心化.易扩展的可视化DAG大数据调度系统. 于2017年在易观数科立项,2019年 ...

  8. Linux 02 基本命令

    参考源 https://www.bilibili.com/video/BV187411y7hF?spm_id_from=333.999.0.0 版本 本文章基于 CentOS 7.6 工具 清屏 cl ...

  9. 对于Java中的Loop或For-each,哪个更快

    Which is Faster For Loop or For-each in Java 对于Java中的Loop或Foreach,哪个更快 通过本文,您可以了解一些集合遍历技巧. Java遍历集合有 ...

  10. Vue3 + Socket.io + Knex + TypeScript 实现可以私聊的聊天室

    前言 下文只在介绍实现的核心代码,没有涉及到具体的实现细节,如果感兴趣可以往下看,在文章最后贴上了仓库地址.项目采用前后端模式,前端使用 Vite + Vue3 + TS:后端使用 Knex + Ex ...