环境配置

安装 python

博主使用的版本是 3.10.6

在 Windows 系统上使用 Virtualenv 搭建虚拟环境

  • 安装 Virtualenv

打开 cmd 输入并执行

pip install Virtualenv

等待安装完成即可,如下图。

  • 创建虚拟环境

进入自定义文件夹(Virtualenv),打开 cmd ,输入并执行

py -3 -m venv 虚拟环境名称

可以看到,自定义文件(Virtualenv)中创建了文件夹(virtualenvironment),即自定义的虚拟环境名称。

  • 进入虚拟环境

进入该文件夹,再进入 Scripts,打开 cmd ,输入并执行

activate

  • 退出虚拟环境
deactivate

  • 将Scripts位置加入环境变量(可忽略)

安装环境变量之后,可以在任意位置打开 cmd 进入虚拟环境,而不用先进入 Scripts 文件夹

软件安装(Windows 版)

更新 pip

  • 进入虚拟环境
  • 更新 pip 命令

输入并执行

python.exe -m pip install --upgrade pip

安装 matplotlib

输入并执行

pip install matplotlib

安装 pandas

输入并执行

pip install pandas

安装 TA-Lib

进入官网下载相关文件

https://www.lfd.uci.edu/~gohlke/pythonlibs/

注意只能下载指定版本,与本机 Python 版本一致

比如:TA_Lib-0.4.24-cp38-cp38-win_amd64.whl(前面是库版本 0.4.24,后面是对应的python版本 3.8。最后的数字代表 windows系统。32 位或者 64 位。电脑属性查看或者 cmd 里 python 查看)

一定要一一对应。否则会报 ERROR: TA_Lib-0.4.24-cp38-cp38-win32.whl is not a supported wheel on this platform.平台不符合的错误。

下载出来的文件不能改名。否则会报ERROR: TA_Lib64.whl(你更改后的文件名) is not a valid wheel filename.文件名无效错误。

将该文件放到虚拟环境的 Scripts 文件夹中,该步骤主要为了方便,如果没有配置环境变量

输入并执行(如果该文件在其他文件夹,请输入文件绝对地址)

pip install TA_Lib-0.4.24-cp310-cp310-win_amd64.whl

安装 tables

进入官网下载相关文件

https://www.lfd.uci.edu/~gohlke/pythonlibs/

注意只能下载指定版本,与本机 Python 版本一致

输入并执行

pip install tables-3.7.0-cp310-cp310-win_amd64.whl

安装 jupytyer

输入并执行

pip install jupyter

Jupyter Notebook 使用

  • 进入虚拟环境
  • 输入并执行,即可进入网页端
jupyter notebook
# 或者
ipython notebook

可创建 python 文件,进行如下操作

每一行是一个 cell

快捷键:

  • ctrl enter :运行当前 cell ,留在当前 cell
  • shift enter :运行当前 cell ,创建并进入下一个 cell

命令模式

Y:cell 切换到 code 模式

M:cell 切换到 markdown 模式

A:在当前 cell 的上面添加 cell

B:在当前 cell 的下面添加 cell

双击D:删除当前 cell

编辑模式

多光标操作:Ctrl 键点击鼠标

回退:Ctrl+Z

补全代码:变量、方法后跟 Tab

为一行或多行代码添加/取消注释:Ctrl+/

Matplotlib 使用

基本概念

什么是Matplotlib : 画二维图表的python库

Matplotlib 三层结构

  • Canvas(画板)位于最底层,用户一般接触不到
  • Figure(画布)建立在Canvas之上
  • Axes(绘图区)建立在Figure之上
  • 坐标轴(axis)、图例(legend)等辅助显示层以及图像层都是建立在Axes之上

快速入门

步骤

  1. 创建画布
  2. 绘制图像
  3. 显示图像

import matplotlib.pyplot as plt
import random # 需求:再添加一个城市的温度变化
# 收集到北京当天温度变化情况,温度在1度到3度。 # 1、准备数据 x y
x = range(60)
y_shanghai = [random.uniform(15, 18) for i in x]
y_beijing = [random.uniform(1, 3) for i in x] # 中文显示问题
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号 # 2、创建画布
plt.figure(figsize=(20, 8), dpi=80) # 3、绘制图像
plt.plot(x, y_shanghai, color="r", linestyle="-.", label="上海")
plt.plot(x, y_beijing, color="b", label="北京") # 显示图例,这里显示图例的前提是plt.plot时要添加标签label=“”
plt.legend(loc = "upper right")#legend有自己的参数可以控制图例位置 # 修改x、y刻度
# 准备x的刻度说明 ticks表示刻度
x_label = ["11点{}分".format(i) for i in x]
plt.xticks(x[::5], x_label[::5])
#步长为5,即不让刻度显示过于密集第一处的x[::5]也要写,应该是用来给x_label定位的
plt.yticks(range(0, 40, 5)) # 添加网格显示,其中的alpha是网格的透明程度
plt.grid(linestyle="--", alpha=0.5) # 添加描述信息
plt.xlabel("时间变化")
plt.ylabel("温度变化")
plt.title("上海、北京11点到12点每分钟的温度变化状况") # 保存图片,注意必须放在 show 之前, 因为 show 之后会释放缓存
plt.savefig("test.png") # 4、显示图
plt.show()
  • 图形风格

  • 图例位置

  • 创建多个绘图区
figure, axes = plt.subplots(nrows=1, ncols=2, figsize=(20, 8), dpi=80)

实例:

import matplotlib.pyplot as plt
import random # 需求:再添加一个城市的温度变化
# 收集到北京当天温度变化情况,温度在1度到3度。 # 1、准备数据 x y
x = range(60)
y_shanghai = [random.uniform(15, 18) for i in x]
y_beijing = [random.uniform(1, 3) for i in x] # 2、创建画布
# plt.figure(figsize=(20, 8), dpi=80)
figure, axes = plt.subplots(nrows=1, ncols=2, figsize=(20, 8), dpi=80) # 3、绘制图像
axes[0].plot(x, y_shanghai, color="r", linestyle="-.", label="上海")
axes[1].plot(x, y_beijing, color="b", label="北京") # 显示图例
axes[0].legend()
axes[1].legend() # 修改x、y刻度
# 准备x的刻度说明
x_label = ["11点{}分".format(i) for i in x]
axes[0].set_xticks(x[::5])
axes[0].set_xticklabels(x_label)
axes[0].set_yticks(range(0, 40, 5))
axes[1].set_xticks(x[::5])
axes[1].set_xticklabels(x_label)
axes[1].set_yticks(range(0, 40, 5)) # 添加网格显示
axes[0].grid(linestyle="--", alpha=0.5)
axes[1].grid(linestyle="--", alpha=0.5) # 添加描述信息
axes[0].set_xlabel("时间变化")
axes[0].set_ylabel("温度变化")
axes[0].set_title("上海11点到12点每分钟的温度变化状况")
axes[1].set_xlabel("时间变化")
axes[1].set_ylabel("温度变化")
axes[1].set_title("北京11点到12点每分钟的温度变化状况") # 4、显示图
plt.show()

【机器学习】利用 Python 进行数据分析的环境配置 Windows(Jupyter,Matplotlib,Pandas)的更多相关文章

  1. < 利用Python进行数据分析 - 第2版 > 第五章 pandas入门 读书笔记

    <利用Python进行数据分析·第2版>第五章 pandas入门--基础对象.操作.规则 python引用.浅拷贝.深拷贝 / 视图.副本 视图=引用 副本=浅拷贝/深拷贝 浅拷贝/深拷贝 ...

  2. 《利用python进行数据分析》读书笔记--第五章 pandas入门

    http://www.cnblogs.com/batteryhp/p/5006274.html pandas是本书后续内容的首选库.pandas可以满足以下需求: 具备按轴自动或显式数据对齐功能的数据 ...

  3. $《利用Python进行数据分析》学习笔记系列——IPython

    本文主要介绍IPython这样一个交互工具的基本用法. 1. 简介 IPython是<利用Python进行数据分析>一书中主要用到的Python开发环境,简单来说是对原生python交互环 ...

  4. 利用Python进行数据分析

    最近在阅读<利用Python进行数据分析>,本篇博文作为读书笔记 ,记录一下阅读书签和实践心得. 准备工作 python环境配置好了,可以参见我之前的博文<基于Python的数据分析 ...

  5. PYTHON学习(三)之利用python进行数据分析(1)---准备工作

    学习一门语言就是不断实践,python是目前用于数据分析最流行的语言,我最近买了本书<利用python进行数据分析>(Wes McKinney著),还去图书馆借了本<Python数据 ...

  6. 利用python进行数据分析——(一)库的学习

    总结一下自己对python常用包:Numpy,Pandas,Matplotlib,Scipy,Scikit-learn 一. Numpy: 标准安装的Python中用列表(list)保存一组值,可以用 ...

  7. 利用python进行数据分析--(阅读笔记一)

    以此记录阅读和学习<利用Python进行数据分析>这本书中的觉得重要的点! 第一章:准备工作 1.一组新闻文章可以被处理为一张词频表,这张词频表可以用于情感分析. 2.大多数软件是由两部分 ...

  8. 参考《利用Python进行数据分析(第二版)》高清中文PDF+高清英文PDF+源代码

    第2版针对Python 3.6进行全面修订和更新,涵盖新版的pandas.NumPy.IPython和Jupyter,并增加大量实际案例,可以帮助高效解决一系列数据分析问题. 第2版中的主要更新了Py ...

  9. 利用Python进行数据分析-Pandas(第一部分)

    利用Python进行数据分析-Pandas: 在Pandas库中最重要的两个数据类型,分别是Series和DataFrame.如下的内容主要围绕这两个方面展开叙述! 在进行数据分析时,我们知道有两个基 ...

随机推荐

  1. linux 学习 mysql安装到连接

    在Centos7.6 上安装mysql ps:一般mysql安装后会在/var/log/下面生成一个mysqld.log文件,如果遇到启动不了或者其他问题,基本都可以在这个log文件里面找到错误原因 ...

  2. WebGPU 导入[2] - 核心概念与重要机制解读

    目录 1. 核心概念 ① 适配器和设备 ② 缓冲.纹理.采样器 ③ 绑定组 ④ 着色器与管线 ⑤ 编码器与队列 2. 重要机制 ① 缓冲映射机制 ② 时间线 1. 核心概念 这部分不会详细展开,以后写 ...

  3. CentOS Docker安装 && docker 基础指令

    1 # 直接从官网下载docker的安装命令包(docker已经很贴心将安装shell脚本帮我们准备好了) 2 curl -fsSL get.docker.com -o get-docker.sh 3 ...

  4. SQL 字符串去除空格函数汇总

    SQL 中使用ltrim()去除左边空格 ,rtrim()去除右边空格 ,没有同时去除左右空格的函数,要去除所有空格可以用replace(字符串,' ',''),将字符串里的空格替换为空 . 例:去除 ...

  5. LyScript 实现对内存堆栈扫描

    LyScript插件中提供了三种基本的堆栈操作方法,其中push_stack用于入栈,pop_stack用于出栈,而最有用的是peek_stack函数,该函数可用于检查指定堆栈位置处的内存参数,利用这 ...

  6. GreatSQL重磅特性,InnoDB并行并行查询优化测试

    欢迎来到 GreatSQL社区分享的MySQL技术文章,如有疑问或想学习的内容,可以在下方评论区留言,看到后会进行解答 GreatSQL社区原创内容未经授权不得随意使用,转载请联系小编并注明来源. 1 ...

  7. java学习第一天.day03

    运行程序数据存储 ASCII Unicode(万国码) A在码表的顺序是65,a在码表的顺序是97,1代表49 变量 定义一个变量声明数据类型是开辟一个空间存储数据,java对数据的定义比较严格,比如 ...

  8. Python图像处理丨基于OpenCV和像素处理的图像灰度化处理

    摘要:本篇文章讲解图像灰度化处理的知识,结合OpenCV调用cv2.cvtColor()函数实现图像灰度操作,使用像素处理方法对图像进行灰度化处理. 本文分享自华为云社区<[Python图像处理 ...

  9. 理想汽车 x JuiceFS:从 Hadoop 到云原生的演进与思考

    理想汽车在 Hadoop 时代的技术架构 首先简单回顾下大数据技术的发展,基于我个人的理解,将大数据的发展分了4个时期: 第一个时期: 2006 年到 2008 年.2008 年左右,Hadoop 成 ...

  10. SpringBoot Excel导入导出

    一.引入pom.xml依赖 <dependency> <groupId>org.springframework.boot</groupId> <artifac ...