VideoPipe可视化视频结构化框架开源了!

完成多路视频并行接入、解码、多级推理、结构化数据分析、上报、编码推流等过程,插件式/pipe式编程风格,功能上类似英伟达的deepstream和华为的mxvision,但底层核心不依赖复杂难懂的gstreamer框架(少部分地方需要),框架主干部分主要使用原生C++ STL实现,目标是平台高可移植性。框架可用于:视频结构化、以图搜图、目标行为分析等应用领域。
源码地址:https://github.com/sherlockchou86/video_pipe_c
主要功能
- 视频接入,支持file/rtsp/udp/rtmp等主流视频流协议;
- 多级推理,自带检测/分类/特征提取等推理插件。默认使用opencv.dnn实现,可基于其他类似tensorrt、甚至原生的pytorch/tensorflow扩展新的推理插件;
- 目标跟踪,自带基于iou的跟踪插件,可基于其他算法扩展新的跟踪插件;
- 行为分析,自带若干行为分析插件,比如目标跨线、拥堵/目标聚集判断;
- 图像叠加,结构化数据和视频融合显示;
- 消息推送,自带基于kafka的消息推送插件,可基于其他消息中间件扩展新的插件;
- 录像/截图,自带截图/录像插件;
- 编码输出,支持file/screen/rtmp/rtsp等主流方式输出编码结果;
主要特点
- 可视化调试,自带pipe可视化功能,可在界面实时显示pipe的运行状态,如pipe中各个环节的fps/缓存队列大小,以及计算pipe起/止插件之间的时间延时,帮助程序员快速定位性能瓶颈位置;
- 插件与插件之间默认采用“smart pointer”传递数据,数据从头到尾,只需创建一次,不存在拷贝操作。当然,可根据需要设置“深拷贝”方式在插件之间传递数据;
- pipe中各通道视频的fps、分辨率、编码方式、来源均可不同,并且可单独暂停某一通道;
- pipe中可传递的数据只有两种,一种frame_meta数据、一种control_meta数据,结构清晰明了;
- 插件组合方式自由,在满足客观逻辑的前提下,可合并、可拆分,根据需要设计不同的pipe结构。同时自带pipe结构检查功能,识别出不合规的pipe结构;
- pipe支持各种hook,外部通过hook可以实时获取pipe的运行情况(第1点就是基于该特性实现);
- 支持一个Pipe处理多路视频(多路共用一个推理模型,Pipe分支涉及到merge和split操作),批处理提速;也支持一个Pipe只处理一路视频(各路使用自己的推理模型,Pipe呈直线状、多个Pipe并存),基于不同视频做不同的推理任务;
- 基于指定基类,所有自带插件全部可自定义重新实现;
- 框架主干代码完全基于原生C++ STL实现,跨平台编译部署简单。
目前进度
开发环境:vs code/ubuntu 18.04/C++17/opencv 4.6/ffmpeg 3.4.8/gstreamer 1.20。之前使用wsl1/2+ubuntu22.04,但是wsl坑太多,后放弃。
- 2022/9/30:完成基于tensorrt的检测插件(一级推理和二级推理),非默认的opencv::dnn。源码上线
- 2022/9/15:完成基于paddle的ocr文字识别相关插件,基于paddle推理库(非默认的opencv::dnn)
- 2022/9/1:完成基于yunet/sface的人脸检测、识别以及显示相关插件开发,实现多pipe并行运行的机制,多个pipe可加载不同模型、基于不同视频完成不同的推理任务。(单个pipe接入多路视频、共用相同的模型之前已实现)
- 2022/8/15:完成openpose肢体检测器相关插件开发,完成图像二级分类插件开发。
- 2022/8/5:完成infer相关基类、yolo检测器派生类的实现,走通整个一级推理流程,rtmp/screen 2种输出。
- 2022/7/22:已完成主干框架开发,预估占总体进度的1/3。等基本完成后开源,有兴趣的朋友可以关注。
如何使用
#include "VP.h" #include "../nodes/vp_file_src_node.h"
#include "../nodes/infers/vp_trt_vehicle_detector.h"
#include "../nodes/infers/vp_trt_vehicle_plate_detector.h"
#include "../nodes/osd/vp_osd_node_v2.h"
#include "../nodes/vp_screen_des_node.h"
#include "../nodes/vp_rtmp_des_node.h"
#include "../utils/analysis_board/vp_analysis_board.h" #if MAIN
int main() {
// create nodes
auto file_src_0 = std::make_shared<vp_nodes::vp_file_src_node>("file_src_0", 0, "./test_video/13.mp4");
auto trt_vehicle_detector = std::make_shared<vp_nodes::vp_trt_vehicle_detector>("vehicle_detector", "./vehicle.trt");
auto trt_vehicle_plate_detector = std::make_shared<vp_nodes::vp_trt_vehicle_plate_detector>("vehicle_plate_detector", "./det.trt", "./rec.trt");
auto osd_0 = std::make_shared<vp_nodes::vp_osd_node_v2>("osd_0", "./font/NotoSansCJKsc-Medium.otf");
auto screen_des_0 = std::make_shared<vp_nodes::vp_screen_des_node>("screen_des_0", 0, true, vp_objects::vp_size{640, 360});
auto rtmp_des_0 = std::make_shared<vp_nodes::vp_rtmp_des_node>("rtmp_des_0", 0, "rtmp://192.168.77.105/live/10000", vp_objects::vp_size{1280, 720}); // construct pipeline
trt_vehicle_detector->attach_to({file_src_0});
trt_vehicle_plate_detector->attach_to({trt_vehicle_detector});
osd_0->attach_to({trt_vehicle_plate_detector}); // split into 2 sub branches automatically
screen_des_0->attach_to({osd_0});
rtmp_des_0->attach_to({osd_0}); // start pipeline
file_src_0->start(); // visualize pipeline for debug
vp_utils::vp_analysis_board board({file_src_0});
board.display();
}
#endif
上面代码可以生成3个画面:

VideoPipe可视化视频结构化框架开源了!的更多相关文章
- VideoPipe可视化视频结构化框架新增功能详解(2022-11-4)
VideoPipe从国庆节上线源代码到现在经历过了一个月时间,期间吸引了若干小伙伴的参与,现将本阶段新增内容总结如下,有兴趣的朋友可以加微信拉群交流. 项目地址:https://github.com/ ...
- VP视频结构化框架
完成多路视频并行接入.解码.多级推理.结构化数据分析.上报.编码推流等过程,插件式/pipe式编程风格,功能上类似英伟达的deepstream和华为的mxvision,但底层核心不依赖复杂难懂的gst ...
- 视频结构化 AI 推理流程
「视频结构化」是一种 AI 落地的工程化实现,目的是把 AI 模型推理流程能够一般化.它输入视频,输出结构化数据,将结果给到业务系统去形成某些行业的解决方案. 换个角度,如果你想用摄像头来实现某些智能 ...
- [AI开发]基于DeepStream的视频结构化解决方案
视频结构化的定义 利用深度学习技术实时分析视频中有价值的内容,并输出结构化数据.相比数据库中每条结构化数据记录,视频.图片.音频等属于非结构化数据,计算机程序不能直接识别非结构化数据,因此需要先将这些 ...
- [AI开发]视频结构化类应用的局限性
算法不是通用的,基于深度学习的应用系统不但做不到通用,即使对于同一类业务场景,还需要为每个场景做定制.特殊处理,这样才能有可能到达实用标准.这种局限性在计算机视觉领域的应用中表现得尤其突出,本文介绍基 ...
- [AI开发]零代码分析视频结构化类应用结构设计
视频结构化类应用涉及到的技术栈比较多,而且每种技术入门门槛都较高,比如视频接入存储.编解码.深度学习推理.rtmp流媒体等等.每个环节的水都非常深,单独拿出来可以写好几篇文章,如果没有个几年经验基本很 ...
- 你真的了解字典(Dictionary)吗? C# Memory Cache 踩坑记录 .net 泛型 结构化CSS设计思维 WinForm POST上传与后台接收 高效实用的.NET开源项目 .net 笔试面试总结(3) .net 笔试面试总结(2) 依赖注入 C# RSA 加密 C#与Java AES 加密解密
你真的了解字典(Dictionary)吗? 从一道亲身经历的面试题说起 半年前,我参加我现在所在公司的面试,面试官给了一道题,说有一个Y形的链表,知道起始节点,找出交叉节点.为了便于描述,我把上面 ...
- 开源的JavaScript插件化框架MinimaJS
本文介绍我开发的一个JavaScript编写的插件化框架——MinimaJS,完全开源,源码下载地址:https://github.com/lorry2018/minimajs.该框架参考OSGi规范 ...
- Salesforce开源TransmogrifAI:用于结构化数据的端到端AutoML库
AutoML 即通过自动化的机器学习实现人工智能模型的快速构建,它可以简化机器学习流程,方便更多人利用人工智能技术.近日,软件行业巨头 Salesforce 开源了其 AutoML 库 Transmo ...
随机推荐
- 常用的函数式接口Function接口和常用的函数式接口Function接口默认方法andThen
常用的函数式接口Function接口 package com.yang.Test.FunctionStudy; import java.util.function.Function; /** * ja ...
- 使用云服务器从0开始搭建云端Jupyter Lab|Notebook
0.购买云服务器 购买服务器我只推荐硅云,因为香港服务器免备案!而且25岁以下仅需10元每月,至少可买3年!每年享有多次原价续费机会,可补价升级配置. 硅云服务器首页:https://www.vpso ...
- mysql like 命中索引
反向索引案例:CREATE TABLE my_tab(x VARCHAR2(20)); INSERT INTO my_tab VALUES('abcde'); COMMIT; CREATE INDEX ...
- Java中类成员访问权限修饰符(public、protected、default、private)
1.public(公共的): 任何类都可以进行访问(最不严格). 2.protected(保护的): 同一包内的类以及其子类可以进行访问. 3.default(缺省的): 类中不加任何访问权限限定的成 ...
- 学python,怎么能不学习scrapy呢!
摘要:本文讲述如何编写scrapy爬虫. 本文分享自华为云社区<学python,怎么能不学习scrapy呢,这篇博客带你学会它>,作者: 梦想橡皮擦 . 在正式编写爬虫案例前,先对 scr ...
- HTTP 协议概述
什么是 HTTP 协议 什么是协议? 协议是指双方,或多方,相互约定好,大家都需要遵守的规则,叫协议. 所谓 HTTP 协议,就是指,客户端和服务器之间通信时,发送的数据,需要遵守的规则,叫 HTTP ...
- Luogu4085 [USACO17DEC]Haybale Feast (线段树,单调队列)
\(10^18\)是要long long的. \(nlogn\)单调队列上维护\(logn\)线段树. #include <iostream> #include <cstdio> ...
- 前端React项目遇到【Uncaught SyntaxError: Unexpected token '<'】错误的解决方式
问题描述 前端部署好项目后,打开相应的页面显示一片空白,打开console显示 问题排查思路 理解问题的本质 出现这个错误的原因是浏览器期望得到js文件,但页面却返回了html文件,如图中的js文件点 ...
- 通过route , tracert , traceroute 查看本地路由配置及访问ip或域名时经过的路由信息
转载请注明出处: 1.路由器和交换机的区别和过程 在windows 系统或linux 系统访问 外网ip 或域名时,都会通过层层的路由器,然后将请求转发到最终的目标服务器:因为互联网通过路由器实现公网 ...
- Java-随机数据生成器(造数据)
概述 简单易用的随机数据生成器.一般用于开发和测试阶段的数据填充.模拟.仿真研究.演示等场景.可以集成到各种类型的java项目中使用. 优点 非常轻量级(不到1M),容易集成,无需过多第三方依赖 简单 ...