题面

我编不下去了!

给出

n

n

n 个点,第

i

i

i 个点的度数限制为

a

i

a_i

ai​,现在需要选出

x

x

x 个点构成一颗树,要求这

x

x

x 个点中每个点的度数不超过这个点的

a

i

a_i

ai​ 值,求

x

=

1

,

2

,

,

n

x=1,2,\ldots,n

x=1,2,…,n 时的方案数。

两种方案不同,当且仅当选出的点集不同或者连边的方式不同。

输入格式

第一行一个正整数

T

T

T,代表有

T

T

T 组数据。每组数据第一行一个正整数

n

n

n

第二行

n

n

n 个正整数

a

1

,

a

2

,

,

a

n

a_1,a_2,\ldots,a_n

a1​,a2​,…,an​。

输出格式

对于每组数据,输出一行

n

n

n 个数,表示

x

=

1

,

2

,

,

n

x=1,2,\ldots,n

x=1,2,…,n 时的答案对

1000000007

1000000007

1000000007 取模后的结果。

样例输入

1
3
2 2 1

样例输出

3 3 2

数据范围与提示

本题共

10

10

10 组测试点。

对于第

i

i

i 个测试点,

1

n

5

i

,

1

T

10

,

1

a

1

,

a

2

,

,

a

n

n

1\leq n\leq 5i,1\leq T\leq 10,1\leq a_1,a_2,\ldots,a_n\leq n

1≤n≤5i,1≤T≤10,1≤a1​,a2​,…,an​≤n。

总的来说,

1

n

50

1\leq n\leq 50

1≤n≤50。

题解

根据 p

r

u

f

e

r

\rm prufer

prufer 序列的知识,我们可以发现,当

x

=

k

x=k

x=k,选的点集为

{

p

1

,

p

2

,

,

p

k

}

\{p_1,p_2,\ldots,p_k\}

{p1​,p2​,…,pk​} 时,答案为:

i

1

=

1

a

p

1

i

2

=

1

a

p

2

.

.

.

i

k

=

1

a

p

k

(

k

2

)

!

(

i

1

1

)

!

(

i

2

1

)

!

.

.

.

(

i

k

1

)

!

[

i

=

(

k

1

)

2

]

\sum_{i_1=1}^{a_{p_1}}\sum_{i_2=1}^{a_{p_2}}...\sum_{i_k=1}^{a_{p_k}}\frac{(k-2)!}{(i_1-1)!(i_2-1)!...(i_k-1)!}[\sum i=(k-1)*2]

i1​=1∑ap1​​​i2​=1∑ap2​​​...ik​=1∑apk​​​(i1​−1)!(i2​−1)!...(ik​−1)!(k−2)!​[∑i=(k−1)∗2]

看来思路已经很清晰了,但是现在暴力能拿

10

10

10 分吗?不好说。

考虑把这个式子拆开:

(

k

2

)

!

i

1

=

1

a

p

1

i

2

=

1

a

p

2

.

.

.

i

k

=

1

a

p

k

1

(

i

1

1

)

!

(

i

2

1

)

!

.

.

.

(

i

k

1

)

!

[

i

=

(

k

1

)

2

]

(k-2)!\sum_{i_1=1}^{a_{p_1}}\sum_{i_2=1}^{a_{p_2}}...\sum_{i_k=1}^{a_{p_k}}\frac{1}{(i_1-1)!(i_2-1)!...(i_k-1)!}[\sum i=(k-1)*2]

(k−2)!i1​=1∑ap1​​​i2​=1∑ap2​​​...ik​=1∑apk​​​(i1​−1)!(i2​−1)!...(ik​−1)!1​[∑i=(k−1)∗2]

右边那个大分式似乎有些头绪了?这不就相当于 "

k

k

k 个物品,每个物品有

a

p

i

a_{p_i}

api​​ 种,选

x

x

x 个的权值为

1

(

x

1

)

!

\frac{1}{(x-1)!}

(x−1)!1​ ,背包大小为

(

k

1

)

2

(k-1)*2

(k−1)∗2 ,问刚好塞满时每种情况权值积的和 "

所以就是个裸的背包DP了,令

d

p

[

i

]

[

j

]

dp[i][j]

dp[i][j] 为选了

i

i

i 物品,背包已用空间为

j

j

j 时的权值积的和,那么类似分组背包问题求解就完了。最终

x

=

k

x=k

x=k 时的答案就是

(

k

2

)

!

d

p

[

k

]

[

(

k

1

)

2

]

(k-2)!*dp[k][(k-1)*2]

(k−2)!∗dp[k][(k−1)∗2],复杂度

O

(

T

n

4

)

O(Tn^4)

O(Tn4) 。

CODE

#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<stack>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define MAXN 55
#define LL long long
#define DB double
#define ENDL putchar('\n')
#define lowbit(x) (-(x) & (x))
LL read() {
LL f = 1,x = 0;char s = getchar();
while(s < '0' || s > '9') {if(s == '-')f=-f;s = getchar();}
while(s >= '0' && s <= '9') {x=x*10+(s-'0');s = getchar();}
return f * x;
}
const int MOD = 1000000007;
int n,m,i,j,s,o,k;
inline void MD(int &x) {if(x>=MOD)x-=MOD;}
int a[MAXN];
int dp[MAXN][MAXN<<1];
int fac[MAXN],inv[MAXN],invf[MAXN];
int main() {
freopen("c.in","r",stdin);
freopen("c.out","w",stdout);
int T = read();
fac[1] = fac[0] = inv[1] = inv[0] = invf[1] = invf[0] = 1;
for(int i = 2;i <= 50;i ++) {
fac[i] = fac[i-1] *1ll* i % MOD;
inv[i] = (MOD-inv[MOD % i]) *1ll* (MOD/i) % MOD;
invf[i] = invf[i-1] *1ll* inv[i] % MOD;
}
while(T --) {
n = read();
for(int i = 1;i <= n;i ++) a[i] = read();
memset(dp,0,sizeof(dp));
dp[0][0] = 1;
int du = (n-1)*2;
for(int i = 1;i <= n;i ++) {
for(int ct = n;ct > 0;ct --) {
for(int j = du;j >= 1;j --) {
for(int x = 1;x <= j && x <= a[i];x ++) {
MD(dp[ct][j] += dp[ct-1][j-x] *1ll* invf[x-1] % MOD);
}
}
}
}
for(int k = 1;k <= n;k ++) {
if(k == 1) {printf("%d ",n);continue;}
if(k == 2) {printf("%lld ",n*1ll*(n-1) % MOD *1ll* inv[2] % MOD);continue;}
int ans = dp[k][(k-1)*2] *1ll* fac[k-2] % MOD;
printf("%d ",ans);
}
ENDL;
}
return 0;
}

[2021.4.9多校省选模拟35]隐形斗篷 (prufer序列,背包DP)的更多相关文章

  1. codehunter 「Adera 6」杯省选模拟赛 网络升级 【树形dp】

    直接抄ppt好了--来自lyd 注意只用对根判断是否哟留下儿子 #include<iostream> #include<cstdio> using namespace std; ...

  2. 6.29 省选模拟赛 坏题 AC自动机 dp 图论

    考场上随手构造了一组数据把自己卡掉了 然后一直都是掉线状态了. 最后发现这个东西不是subtask -1的情况不多 所以就没管无解直接莽 写题有点晚 故没调出来.. 考虑怎么做 容易想到建立AC自动机 ...

  3. 5.13 省选模拟赛 优雅的绽放吧,墨染樱花 多项式 prufer序列 计数 dp

    LINK:优雅的绽放吧,墨染樱花 当时考完只会50分的做法 最近做了某道题受到启发 故会做这道题目了.(末尾附30分 50分 100分code 看到度数容易想到prufer序列 考虑dp统计方案数. ...

  4. 5.4 省选模拟赛 修改 线段树优化dp 线段树上二分

    LINK:修改 题面就不放了 大致说一下做法.不愧是dls出的题 以前没见过这种类型的 不过还是自己dp的时候写丑了. 从这道题中得到一个结论 dp方程要写的优美一点 不过写的过丑 优化都优化不了. ...

  5. 3.29省选模拟赛 除法与取模 dp+组合计数

    LINK:除法与取模 鬼题.不过50分很好写.考虑不带除法的时候 其实是一个dp的组合计数. 考虑带除法的时候需要状压一下除法操作. 因为除法操作是不受x的大小影响的 所以要状压这个除法操作. 直接采 ...

  6. [CSP-S模拟测试]:简单的序列(DP)

    题目描述 从前有个括号序列$s$,满足$|s|=m$.你需要统计括号序列对$(p,q)$的数量. 其中$(p,q)$满足$|p|+|s|+|q|=n$,且$p+s+q$是一个合法的括号序列. 输入格式 ...

  7. 【洛谷比赛】[LnOI2019]长脖子鹿省选模拟赛 T1 题解

    今天是[LnOI2019]长脖子鹿省选模拟赛的时间,小编表示考的不怎么样,改了半天也只会改第一题,那也先呈上题解吧. T1:P5248 [LnOI2019SP]快速多项式变换(FPT) 一看这题就很手 ...

  8. 省选模拟赛第四轮 B——O(n^4)->O(n^3)->O(n^2)

    一 稍微转化一下,就是找所有和原树差距不超过k的不同构树的个数 一个挺trick的想法是: 由于矩阵树定理的行列式的值是把邻接矩阵数值看做边权的图的所有生成树的边权乘积之和 那么如果把不存在于原树中的 ...

  9. 6.28 NOI模拟赛 好题 状压dp 随机化

    算是一道比较新颖的题目 尽管好像是两年前的省选模拟赛题目.. 对于20%的分数 可以进行爆搜,对于另外20%的数据 因为k很小所以考虑上状压dp. 观察最后答案是一个连通块 从而可以发现这个连通块必然 ...

随机推荐

  1. Python3 collections模块

    https://www.cnblogs.com/zhangxinqi/p/7921941.html http://www.wjhsh.net/meng-wei-zhi-p-8259022.html h ...

  2. 喜提JDK的BUG一枚!多线程的情况下请谨慎使用这个类的stream遍历。

    你好呀,我是歪歪. 前段时间在 RocketMQ 的 ISSUE 里面冲浪的时候,看到一个 pr,虽说是在 RocketMQ 的地盘上发现的,但是这个玩意吧,其实和 RocketMQ 没有任何关系. ...

  3. Swoole一键操作基于阿里云的RDS数据库迁移+OSS文件搬迁

    传统的数据库搬迁思路是把数据库表的结构及数据都查询出来,然后通过循环进行数据结构重组拼接.然后导出!数据量少的话,这样当然是没毛病.当数据量太大的时候,服务器的内存开销就吃不住了,很容易炸掉,导致服务 ...

  4. .NET 6.0.6 和 .NET Core 3.1.26、Visual Studio 2022 17.2 和 17.3 Preview 2 和 .NET 7.0 Preview 5 同时发布

    Microsoft 昨天发布了适用于 .NET 6.0.6 和 .NET Core 3.1.26.NuGet.Visual Studio 2019 和 Visual Studio 2022 17.2 ...

  5. 【Redis】客观下线

    在sentinelHandleRedisInstance函数中,如果是主节点,需要做如下处理: void sentinelHandleRedisInstance(sentinelRedisInstan ...

  6. Vscode个性化设置:让一个小萌妹陪你敲代码

    前言 大家平时都用什么代码编辑器啊!我个人比较喜欢用vscode,因为有以下几点: 开源,免费: 自定义配置 集成git 智能提示强大 支持各种文件格式(html/jade/css/less/sass ...

  7. UiPath鼠标操作元素的介绍和使用

    一.鼠标(mouse)操作的介绍 模拟用户使用鼠标操作的一种行为,例如单击,双击,悬浮.根据作用对象的不同我们可以分为对元素的操作.对文本的操作和对图像的操作 二.鼠标对元素的操作在UiPath中的使 ...

  8. 深入理解 volatile 关键字

    volatile 关键字是 Java 语言的高级特性,但要弄清楚其工作原理,需要先弄懂 Java 内存模型.如果你之前没了解过 Java 内存模型,那可以先看看之前我写过的一篇「深入理解 Java 内 ...

  9. SpringCloudGateway微服务网关实战与源码分析 - 中

    实战 路由过滤器工厂 路由过滤器允许以某种方式修改传入的HTTP请求或传出的HTTP响应.路由过滤器的作用域是特定的路由.SpringCloud Gateway包括许多内置的GatewayFilter ...

  10. abstract,抽象修饰符

    //abstract 抽象类:类由extends继承继承表现在单继承(接口可以多继承)//abstract--约束~~有人帮我们实现抽象方法,只有方法名字,没有方法实现1.不能靠new这个抽象类,只靠 ...