clang的线程安全分析模块 thread safety analysis
#include "mutex.h"
class BankAccount {
private:
Mutex mu;
int balance GUARDED_BY(mu);
void depositImpl(int amount) {
balance += amount; // WARNING! Cannot write balance without locking mu.
}
void withdrawImpl(int amount) REQUIRES(mu) {
balance -= amount; // OK. Caller must have locked mu.
}
public:
void withdraw(int amount) {
mu.Lock();
withdrawImpl(amount); // OK. We've locked mu.
} // WARNING! Failed to unlock mu.
void transferFrom(BankAccount& b, int amount) {
mu.Lock();
b.withdrawImpl(amount); // WARNING! Calling withdrawImpl() requires locking b.mu.
depositImpl(amount); // OK. depositImpl() has no requirements.
mu.Unlock();
}
};
clang -c -Wthread-safety example.cpp
Mutex mu;
int *p1 GUARDED_BY(mu);
int *p2 PT_GUARDED_BY(mu);
unique_ptr<int> p3 PT_GUARDED_BY(mu); void test() {
p1 = 0; // Warning! *p2 = 42; // Warning!
p2 = new int; // OK. *p3 = 42; // Warning!
p3.reset(new int); // OK.
}
Mutex mu1, mu2;
int a GUARDED_BY(mu1);
int b GUARDED_BY(mu2); void foo() REQUIRES(mu1, mu2) {
a = 0;
b = 0;
} void test() {
mu1.Lock();
foo(); // Warning! Requires mu2.
mu1.Unlock();
}
Mutex mu;
MyClass myObject GUARDED_BY(mu); void lockAndInit() ACQUIRE(mu) {
mu.Lock();
myObject.init();
} void cleanupAndUnlock() RELEASE(mu) {
myObject.cleanup();
} // Warning! Need to unlock mu. void test() {
lockAndInit();
myObject.doSomething();
cleanupAndUnlock();
myObject.doSomething(); // Warning, mu is not locked.
}
template <class T>
class CAPABILITY("mutex") Container {
private:
Mutex mu;
T* data; public:
// Hide mu from public interface.
void Lock() ACQUIRE() { mu.Lock(); }
void Unlock() RELEASE() { mu.Unlock(); } T& getElem(int i) { return data[i]; }
}; void test() {
Container<int> c;
c.Lock();
int i = c.getElem(0);
c.Unlock();
}
Mutex mu;
int a GUARDED_BY(mu); void clear() EXCLUDES(mu) {
mu.Lock();
a = 0;
mu.Unlock();
} void reset() {
mu.Lock();
clear(); // Warning! Caller cannot hold 'mu'.
mu.Unlock();
}
class Counter {
Mutex mu;
int a GUARDED_BY(mu);
void unsafeIncrement() NO_THREAD_SAFETY_ANALYSIS { a++; }
};
class MyClass {
private:
Mutex mu;
int a GUARDED_BY(mu);
public:
Mutex* getMu() RETURN_CAPABILITY(mu) { return μ }
// analysis knows that getMu() == mu
void clear() REQUIRES(getMu()) { a = 0; }
};
Mutex m1;
Mutex m2 ACQUIRED_AFTER(m1); // Alternative declaration
// Mutex m2;
// Mutex m1 ACQUIRED_BEFORE(m2); void foo() {
m2.Lock();
m1.Lock(); // Warning! m2 must be acquired after m1.
m1.Unlock();
m2.Unlock();
}
#ifndef THREAD_SAFETY_ANALYSIS_MUTEX_H
#define THREAD_SAFETY_ANALYSIS_MUTEX_H // Enable thread safety attributes only with clang.
// The attributes can be safely erased when compiling with other compilers.
#if defined(__clang__) && (!defined(SWIG))
#define THREAD_ANNOTATION_ATTRIBUTE__(x) __attribute__((x))
#else
#define THREAD_ANNOTATION_ATTRIBUTE__(x) // no-op
#endif #define CAPABILITY(x) \
THREAD_ANNOTATION_ATTRIBUTE__(capability(x)) #define SCOPED_CAPABILITY \
THREAD_ANNOTATION_ATTRIBUTE__(scoped_lockable) #define GUARDED_BY(x) \
THREAD_ANNOTATION_ATTRIBUTE__(guarded_by(x)) #define PT_GUARDED_BY(x) \
THREAD_ANNOTATION_ATTRIBUTE__(pt_guarded_by(x)) #define ACQUIRED_BEFORE(...) \
THREAD_ANNOTATION_ATTRIBUTE__(acquired_before(__VA_ARGS__)) #define ACQUIRED_AFTER(...) \
THREAD_ANNOTATION_ATTRIBUTE__(acquired_after(__VA_ARGS__)) #define REQUIRES(...) \
THREAD_ANNOTATION_ATTRIBUTE__(requires_capability(__VA_ARGS__)) #define REQUIRES_SHARED(...) \
THREAD_ANNOTATION_ATTRIBUTE__(requires_shared_capability(__VA_ARGS__)) #define ACQUIRE(...) \
THREAD_ANNOTATION_ATTRIBUTE__(acquire_capability(__VA_ARGS__)) #define ACQUIRE_SHARED(...) \
THREAD_ANNOTATION_ATTRIBUTE__(acquire_shared_capability(__VA_ARGS__)) #define RELEASE(...) \
THREAD_ANNOTATION_ATTRIBUTE__(release_capability(__VA_ARGS__)) #define RELEASE_SHARED(...) \
THREAD_ANNOTATION_ATTRIBUTE__(release_shared_capability(__VA_ARGS__)) #define TRY_ACQUIRE(...) \
THREAD_ANNOTATION_ATTRIBUTE__(try_acquire_capability(__VA_ARGS__)) #define TRY_ACQUIRE_SHARED(...) \
THREAD_ANNOTATION_ATTRIBUTE__(try_acquire_shared_capability(__VA_ARGS__)) #define EXCLUDES(...) \
THREAD_ANNOTATION_ATTRIBUTE__(locks_excluded(__VA_ARGS__)) #define ASSERT_CAPABILITY(x) \
THREAD_ANNOTATION_ATTRIBUTE__(assert_capability(x)) #define ASSERT_SHARED_CAPABILITY(x) \
THREAD_ANNOTATION_ATTRIBUTE__(assert_shared_capability(x)) #define RETURN_CAPABILITY(x) \
THREAD_ANNOTATION_ATTRIBUTE__(lock_returned(x)) #define NO_THREAD_SAFETY_ANALYSIS \
THREAD_ANNOTATION_ATTRIBUTE__(no_thread_safety_analysis) // Defines an annotated interface for mutexes.
// These methods can be implemented to use any internal mutex implementation.
class CAPABILITY("mutex") Mutex {
public:
// Acquire/lock this mutex exclusively. Only one thread can have exclusive
// access at any one time. Write operations to guarded data require an
// exclusive lock.
void Lock() ACQUIRE(); // Acquire/lock this mutex for read operations, which require only a shared
// lock. This assumes a multiple-reader, single writer semantics. Multiple
// threads may acquire the mutex simultaneously as readers, but a writer
// must wait for all of them to release the mutex before it can acquire it
// exclusively.
void ReaderLock() ACQUIRE_SHARED(); // Release/unlock an exclusive mutex.
void Unlock() RELEASE(); // Release/unlock a shared mutex.
void ReaderUnlock() RELEASE_SHARED(); // Try to acquire the mutex. Returns true on success, and false on failure.
bool TryLock() TRY_ACQUIRE(true); // Try to acquire the mutex for read operations.
bool ReaderTryLock() TRY_ACQUIRE_SHARED(true); // Assert that this mutex is currently held by the calling thread.
void AssertHeld() ASSERT_CAPABILITY(this); // Assert that is mutex is currently held for read operations.
void AssertReaderHeld() ASSERT_SHARED_CAPABILITY(this); // For negative capabilities.
const Mutex& operator!() const { return *this; }
}; // MutexLocker is an RAII class that acquires a mutex in its constructor, and
// releases it in its destructor.
class SCOPED_CAPABILITY MutexLocker {
private:
Mutex* mut; public:
MutexLocker(Mutex *mu) ACQUIRE(mu) : mut(mu) {
mu->Lock();
}
~MutexLocker() RELEASE() {
mut->Unlock();
}
}; #ifdef USE_LOCK_STYLE_THREAD_SAFETY_ATTRIBUTES
// The original version of thread safety analysis the following attribute
// definitions. These use a lock-based terminology. They are still in use
// by existing thread safety code, and will continue to be supported. // Deprecated.
#define PT_GUARDED_VAR \
THREAD_ANNOTATION_ATTRIBUTE__(pt_guarded_var) // Deprecated.
#define GUARDED_VAR \
THREAD_ANNOTATION_ATTRIBUTE__(guarded_var) // Replaced by REQUIRES
#define EXCLUSIVE_LOCKS_REQUIRED(...) \
THREAD_ANNOTATION_ATTRIBUTE__(exclusive_locks_required(__VA_ARGS__)) // Replaced by REQUIRES_SHARED
#define SHARED_LOCKS_REQUIRED(...) \
THREAD_ANNOTATION_ATTRIBUTE__(shared_locks_required(__VA_ARGS__)) // Replaced by CAPABILITY
#define LOCKABLE \
THREAD_ANNOTATION_ATTRIBUTE__(lockable) // Replaced by SCOPED_CAPABILITY
#define SCOPED_LOCKABLE \
THREAD_ANNOTATION_ATTRIBUTE__(scoped_lockable) // Replaced by ACQUIRE
#define EXCLUSIVE_LOCK_FUNCTION(...) \
THREAD_ANNOTATION_ATTRIBUTE__(exclusive_lock_function(__VA_ARGS__)) // Replaced by ACQUIRE_SHARED
#define SHARED_LOCK_FUNCTION(...) \
THREAD_ANNOTATION_ATTRIBUTE__(shared_lock_function(__VA_ARGS__)) // Replaced by RELEASE and RELEASE_SHARED
#define UNLOCK_FUNCTION(...) \
THREAD_ANNOTATION_ATTRIBUTE__(unlock_function(__VA_ARGS__)) // Replaced by TRY_ACQUIRE
#define EXCLUSIVE_TRYLOCK_FUNCTION(...) \
THREAD_ANNOTATION_ATTRIBUTE__(exclusive_trylock_function(__VA_ARGS__)) // Replaced by TRY_ACQUIRE_SHARED
#define SHARED_TRYLOCK_FUNCTION(...) \
THREAD_ANNOTATION_ATTRIBUTE__(shared_trylock_function(__VA_ARGS__)) // Replaced by ASSERT_CAPABILITY
#define ASSERT_EXCLUSIVE_LOCK(...) \
THREAD_ANNOTATION_ATTRIBUTE__(assert_exclusive_lock(__VA_ARGS__)) // Replaced by ASSERT_SHARED_CAPABILITY
#define ASSERT_SHARED_LOCK(...) \
THREAD_ANNOTATION_ATTRIBUTE__(assert_shared_lock(__VA_ARGS__)) // Replaced by EXCLUDE_CAPABILITY.
#define LOCKS_EXCLUDED(...) \
THREAD_ANNOTATION_ATTRIBUTE__(locks_excluded(__VA_ARGS__)) // Replaced by RETURN_CAPABILITY
#define LOCK_RETURNED(x) \
THREAD_ANNOTATION_ATTRIBUTE__(lock_returned(x)) #endif // USE_LOCK_STYLE_THREAD_SAFETY_ATTRIBUTES #endif // THREAD_SAFETY_ANALYSIS_MUTEX_H
clang的线程安全分析模块 thread safety analysis的更多相关文章
- Clang的线程安全分析静态工具
本文内容来自 Thread Safety Analysis,如需完整学习,请参考相关链接. Clang线程安全分析工具是C++语言的一种扩展,用于警告代码中潜在的竞争条件.它在编译期间进行静态分析,无 ...
- Thread Safety线程安全
Thread Safe(线程安全)和None Thread Safe(NTS,非线程安全)之分 如果disabled就选择nts(php_stomp-1.0.9-5.5-nts-vc11-x86.zi ...
- 折返(Reentrancy)VS线程安全(Thread safety)
在Wiki上,折返例如,下面的定义(接) In computing, a computer program or subroutine is called reentrant if it can be ...
- 线程安全 Thread Safety Problem scala concurrency 并发
小结: 1.基于java并发模型 Scala concurrency is built on top of the Java concurrency model. 2. 将每个请求放入一个新的线程 T ...
- Thread Safety in Java(java中的线程安全)
Thread Safety in Java is a very important topic. Java provide multi-threaded environment support usi ...
- {Python之线程} 一 背景知识 二 线程与进程的关系 三 线程的特点 四 线程的实际应用场景 五 内存中的线程 六 用户级线程和内核级线程(了解) 七 python与线程 八 Threading模块 九 锁 十 信号量 十一 事件Event 十二 条件Condition(了解) 十三 定时器
Python之线程 线程 本节目录 一 背景知识 二 线程与进程的关系 三 线程的特点 四 线程的实际应用场景 五 内存中的线程 六 用户级线程和内核级线程(了解) 七 python与线程 八 Thr ...
- Java线程问题分析定位
Java线程问题分析定位 分析步骤: 1.使用top命令查看系统资源占用情况,发现Java进程占用大量CPU资源,PID为11572: 2.显示进程详细列表命令:ps -mp 11572 -o THR ...
- jstack和线程dump分析
转自:http://jameswxx.iteye.com/blog/1041173 一:jstack jstack命令的语法格式: jstack <pid>.可以用jps查看java进程 ...
- java线程池分析和应用
比较 在前面的一些文章里,我们已经讨论了手工创建和管理线程.在实际应用中我们有的时候也会经常听到线程池这个概念.在这里,我们可以先针对手工创建管理线程和通过线程池来管理做一个比较.通常,我们如果手工创 ...
随机推荐
- 导出SQL语句
转载请注明来源:https://www.cnblogs.com/hookjc/ if(!($db_conn=mysql_connect($db_server,$db_name,$db_pass))){ ...
- SEL类型
1.什么是SEL类型 SEL类型代表着方法的签名,在类对象的方法列表中存储着该签名与方法代码的对应关系 每个类的方法列表都存储在类对象中 每个方法都有一个与之对应的SEL类型的对象 根据一个SEL对象 ...
- tomcat启用apr需要的三个组件(缺少可能会报错)
tomcat8开始支持Apr,可以提升IO性能,但若配置了使用Apr,如下图所示,则需要安装apr和aprutil和tomcat-native 如果采用nio的方式,则配置可以改成protocol=& ...
- fuzz——AFL基础使用方法
最近打 ctf 的时候感觉有点遇到瓶颈,就来 fuzz 这块看看. AFL 全称为 American huzzy loop,是 Fuzzing 最高级的测试工具之一.这个工具对有源码和无源码的二进制程 ...
- HTML笔记整理--上节
一.认识WEB 「网页」主要是由文字.图像和超链接等元素构成,当然除了这些元素,网页中还可以包括音频.视频以及Flash等. 「浏览器」是网页显示.运行的平台. 「浏览器内核」(排版引擎.解释引擎.渲 ...
- 根据经纬度坐标获得省市区县行政区划城市名称,自建数据库 java python php c# .net 均适用
目录 步骤一.下载省市区边界数据 步骤二.解析CSV文件导入数据库 步骤三.在程序中根据坐标解析获得城市 在LBS应用中,根据坐标来解析获得对应是哪个城市是一个很常见的功能,比如App里面通过手机定位 ...
- 框架02--Iptables实际应用
目录 Iptables实际应用 一.安装iptables 1. 安装iptables软件包 2. 命令格式 3. 参数 二.iptables动作 三.Iptables基本的条件匹配(协议) 四.-s ...
- kubenetes部署prometheus+grafana
文章目录 环境介绍 创建node-exporter 创建Prometheus 创建Grafana 测试 环境介绍 # 关于k8s的集群部署,可以查看我其他博客 [root@master ~]# cat ...
- pypi服务器搭建
pypi服务器搭建 [root@localhost ~]# hostnamectl set-hostname --static pypi-server [root@pypi-server ~]# yu ...
- ASP.NET Core 6框架揭秘-实例演示版[持续更新中…]
作为<ASP.NET Core 3框架揭秘>的升级版,<ASP.NET Core 6框架揭秘>提供了很多新的章节,同时对现有的内容进行大量的修改.虽然本书旨在对ASP.NET ...