LGP4287题解
小清新 manacher 题。题意清楚。
首先看到回文,自然而然地就去想 manacher 了。先想想,manacher 到底在干嘛?
manacher 做的其实是一个暴力,枚举每一个位置最远能够伸到哪儿,但是会利用前面的信息来加速暴力。
然后我们发现要求的是最大而不是所有的长度,所以就算 \(p[i]\) 有初始值也不用管,所有的长度再维护一个和就好了。
而且我们还能够知道一件事情:如果一个串是双倍回文串,那么这个串一定是一个回文串。
所以我们只需要在移动 \(p[i]\) 的时候顺便判断一下 \([i-p[i],i+p[i]]\) 是否为双倍回文串就好啦,只需要判断 \(p[i-\frac {p[i]} 2]\) 的长度够不够就好啦。
于是可以飞快地写出一个 \(O(n)\) 写法。
#include<cstdio>
#include<cctype>
typedef unsigned ui;
const ui M=5e5+5;
char s[M<<1];ui m,n,p[M<<1];
inline ui min(const ui a,const ui b){
return a>b?b:a;
}
signed main(){
ui i,r(0),mid,ans(0);scanf("%u",&m);s[n]='`';s[++n]='#';++n;
while(!isalpha(s[n]=getchar()));s[++n]='#';while(--m)s[++n]=getchar(),s[++n]='#';
for(i=1;i^n;i+=2){
p[i]=i<=r?min(p[(mid<<1)-i],p[mid]+mid-i):1;
while(s[i-p[i]]==s[i+p[i]])!(p[i]++&3)&&(p[i-(p[i]>>1)]<<1)>=p[i]+1&&p[i]-1>ans&&(ans=p[i]-1);
if(i+p[i]-1>r)r=i+p[i]-1,mid=i;
}
printf("%u",ans);
}
LGP4287题解的更多相关文章
- 2016 华南师大ACM校赛 SCNUCPC 非官方题解
我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...
- noip2016十连测题解
以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...
- BZOJ-2561-最小生成树 题解(最小割)
2561: 最小生成树(题解) Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1628 Solved: 786 传送门:http://www.lyd ...
- Codeforces Round #353 (Div. 2) ABCDE 题解 python
Problems # Name A Infinite Sequence standard input/output 1 s, 256 MB x3509 B Restoring P ...
- 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解
题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...
- 2016ACM青岛区域赛题解
A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Jav ...
- poj1399 hoj1037 Direct Visibility 题解 (宽搜)
http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...
- 网络流n题 题解
学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...
- CF100965C题解..
求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...
随机推荐
- 【转】JVM--内存区域划分
[原文地址]https://blog.csdn.net/sd4015700/article/details/50109939 Eden Space.Survivor Space.Tenured Gen ...
- Java-基于JDK的动态代理
原创:转载需注明原创地址 https://www.cnblogs.com/fanerwei222/p/11686615.html 简单的记录一下Java中自带动态代理的用法. 准备材料: 1.一个接口 ...
- Kubernetes:容器资源需求与限制(约束)
Blog:博客园 个人 A Container is guaranteed to have as much memory as it requests, but is not allowed to u ...
- 2、网络并发编程--套接字编程、黏包问题、struct模块、制作简易报头、上传文件数据
昨日内容回顾 面向对象复习(json序列化类) 对象.类.父类的概念 三大特性:封装 继承 多态 双下开头的方法(达到某个条件自动触发) __init__:对象实例化自动触发 __str__:对象执行 ...
- 趣谈IO多路复用的本质
在<轻松搞懂5种IO模型>中,我发起了一个投票. 答案是[同步IO多路复用].目前,60%的朋友答对了.原因这里解释一下. 同步和异步的概念区别 同步:线程自己去获取结果.(一个线程) 异 ...
- Redis小秘密
Redis小秘密 临渊羡鱼,不如退而织网. 一.Redis基本数据类型 想必很多人都能脱口而出String.List.Hash.Sorted Set和Set五种基本数据类型. 以及五大基本数据类型简要 ...
- Dubbo扩展点应用之一filter及@Activate自激活使用
与很多框架一样,Dubbo也存在拦截(过滤)机制,可以通过该机制在执行目标程序前后执行我们指定的代码.Dubbo中Filter只是Dubbo提供的可自定义扩展的扩展点之一.通过该扩展点地理解,可以触类 ...
- Eureka Server启动过程
前面对Eureka的服务端及客户端的使用均已成功实践,对比Zookeeper注册中心的使用区别还是蛮大的: P:分区容错性(⼀定的要满⾜的)C:数据⼀致性 A:⾼可⽤:CAP不可能同时满⾜三个,要么是 ...
- 微服务从代码到k8s部署应有尽有系列(六、订单服务)
我们用一个系列来讲解从需求到上线.从代码到k8s部署.从日志到监控等各个方面的微服务完整实践. 整个项目使用了go-zero开发的微服务,基本包含了go-zero以及相关go-zero作者开发的一些中 ...
- 认识 LLVM
简介 LLVM是一套提供编译器基础设施的开源项目,是用 C++ 编写,包含一系列模块化的编译器组件和工具链,用来开发编译器前端和后端.它是为了任意一种编程语言而写成的程序,利用虚拟技术创造出编译时期. ...