小清新 manacher 题。题意清楚。

首先看到回文,自然而然地就去想 manacher 了。先想想,manacher 到底在干嘛?

manacher 做的其实是一个暴力,枚举每一个位置最远能够伸到哪儿,但是会利用前面的信息来加速暴力。

然后我们发现要求的是最大而不是所有的长度,所以就算 \(p[i]\) 有初始值也不用管,所有的长度再维护一个和就好了。

而且我们还能够知道一件事情:如果一个串是双倍回文串,那么这个串一定是一个回文串。

所以我们只需要在移动 \(p[i]\) 的时候顺便判断一下 \([i-p[i],i+p[i]]\) 是否为双倍回文串就好啦,只需要判断 \(p[i-\frac {p[i]} 2]\) 的长度够不够就好啦。

于是可以飞快地写出一个 \(O(n)\) 写法。

#include<cstdio>
#include<cctype>
typedef unsigned ui;
const ui M=5e5+5;
char s[M<<1];ui m,n,p[M<<1];
inline ui min(const ui a,const ui b){
return a>b?b:a;
}
signed main(){
ui i,r(0),mid,ans(0);scanf("%u",&m);s[n]='`';s[++n]='#';++n;
while(!isalpha(s[n]=getchar()));s[++n]='#';while(--m)s[++n]=getchar(),s[++n]='#';
for(i=1;i^n;i+=2){
p[i]=i<=r?min(p[(mid<<1)-i],p[mid]+mid-i):1;
while(s[i-p[i]]==s[i+p[i]])!(p[i]++&3)&&(p[i-(p[i]>>1)]<<1)>=p[i]+1&&p[i]-1>ans&&(ans=p[i]-1);
if(i+p[i]-1>r)r=i+p[i]-1,mid=i;
}
printf("%u",ans);
}

LGP4287题解的更多相关文章

  1. 2016 华南师大ACM校赛 SCNUCPC 非官方题解

    我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...

  2. noip2016十连测题解

    以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...

  3. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

  4. Codeforces Round #353 (Div. 2) ABCDE 题解 python

    Problems     # Name     A Infinite Sequence standard input/output 1 s, 256 MB    x3509 B Restoring P ...

  5. 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解

    题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...

  6. 2016ACM青岛区域赛题解

    A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Jav ...

  7. poj1399 hoj1037 Direct Visibility 题解 (宽搜)

    http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...

  8. 网络流n题 题解

    学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...

  9. CF100965C题解..

    求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...

随机推荐

  1. 基于Autolayout的动画

    在修改了约束之后,只要执行下面代码,就能做动画效果 [UIView animateWithDuration:1.0 animations:^{ [添加了约束的view的父控件 layoutIfNeed ...

  2. tabbar选中按钮的标题颜色和字体

    @implementation XMGTabBarController /* 问题: 1.选中按钮的图片被渲染 -> iOS7之后默认tabBar上按钮图片都会被渲染 1.修改图片 2.通过代码 ...

  3. 阿里云无法ping通解决

    https://blog.csdn.net/longgeaisisi/article/details/78429099

  4. sbt修改源(国内优先)

    [repositories] local aliyun: https://maven.aliyun.com/repository/public oschina: http://maven.oschin ...

  5. Docker prefereces

    https://docs.docker.com/docker-for-mac/#preferences-menu docker 的镜像命令需要抽时间了解

  6. 联邦学习:按Dirichlet分布划分Non-IID样本

    我们在<Python中的随机采样和概率分布(二)>介绍了如何用Python现有的库对一个概率分布进行采样,其中的dirichlet分布大家一定不会感到陌生.该分布的概率密度函数为 \[P( ...

  7. 《PHP程序员面试笔试宝典》——如何应对面试官的“激将法”语言?

    如何巧妙地回答面试官的问题? 本文摘自<PHP程序员面试笔试宝典> "激将法"是面试官用以淘汰求职者的一种惯用方法,它是指面试官采用怀疑.尖锐或咄咄逼人的交流方式来对求 ...

  8. 矩阵LU分解

    有如下方程组 ,当矩阵 A 各列向量互不相关时, 方程组有位移解,可以使用消元法求解,具体如下: 使用消元矩阵将 A 变成上三角矩阵 , , 使用消元矩阵作用于向量 b,得到向量 c,, , Ax=b ...

  9. Solution -「CF 804F」Fake bullions

    \(\mathcal{Description}\)   Link.   给定 \(n\) 个点的竞赛图,第 \(i\) 个点代表了 \(s_i\) 个人,每个人(0-based)可能有真金条.此后在 ...

  10. head 插件 Content-Type header [application/x-www-form-urlencoded] is not supported

    { "error": "Content-Type header [application/x-www-form-urlencoded] is not supported& ...