Powerful Number 筛法
我也不想学筛法了,可你考试时候出一个新筛法就不厚道了吧,我还开始以为这是杜教筛。。。
$tips:$学完杜教筛立马学$Powerful \ Number$筛法,此筛法强悍如斯
$Powerful \ Number$筛法
算是杜教筛的究极版$?$
考虑筛积性函数$f$前缀和
求函数$F(n)$
$F(n)=\sum_{i=1}^{n}f(i)$
时间复杂度$O(\sqrt{n})$
主要是基于$PN$的筛法
定义$:$
$PN:n$质因数分解,$n=\prod_{i=1}^{m}p_i^{e_i}$
当满足前$m$个质数都在$n$里面出现多于一次
性质$1:$
所有的$PN$都能表示为$a^2\times b^3$
显然任意一个大于$2$的数字可以被分成$2\times k_1+3\times k_2$
性质$2:$
有关时间复杂度为$O(\sqrt{n})$的性质
$n$以内的$PN$至多有$\sqrt{n}$个
对于函数$\sqrt{n/x^2}^3$在$[1,\sqrt{n}]$积分
$ \displaystyle\int _{1}^{\sqrt{n}} \sqrt{n/x^2}^3=\sqrt{n}$
然后得证
筛法$:$
首先需要构造一个函数$g$
满足在数字为质数时$g(p)=f(p)$
并且$G(n)=\sum_{i=1}^{n}g(i)$易得
构造函数$h=f/g,$这里$/$表示狄利克雷卷积除法
$h(1)=1$
对于素数$p$
$f(p)=g(1)h(p)+g(p)h(1)$
$f(p)=h(p)+g(p)$
$g(p)=f(p)$
$h(p)=0$
由于$h$是积性函数,且所有素数位置的$h$等于$0$,那么除了$PN$的位置,其余的位置都是$0$
还记得杜教筛是$h=f*g$
$f=g*h$
$F(n)=\sum_{i=1}^{n} f(i)$
$F(n)=\sum_{i=1}^{n}(g*h)(i)$
$F(n)=\sum_{i=1}^{n}\sum_{d|i}h(d)g(i/d)$
$F(n)=\sum_{d=1}^{n}h(d)\sum_{i=1}^{n/d}g(i)$
$F(n)=\sum_{d=1}^{n}h(d)G(n/d)$
由于除了$PN$的其他所有位置全部为$0$
那么$:$
$F(n)=\sum_{d=1,d\ is \ PN}^{n}h(d)G(n/d)$
显然的那么,可以在$O(\sqrt{n})$的时间内得到$F(n)$
只需要得到需要的$h(d)\times G(n/d)$
考虑$h$是积性函数,那么我们又知道$h(p)=0$
$h=f/g$
今天考试这个题$h$可以打表发现$x>2,h(x)$不变
还有一般方法
$f=g * h$
$f(p^c)=\sum_{i=0}^{c}g(p^i)h(p^{c-i})$
枚举$p$和指数$c$然后计算
一般过程$:$
$1.$构造$g$
$2.$构造快速求$G$的方法
$3.$计算$h(p^c)$
$4.$搜索$PN$,过程中累加答案
$5.$得到结果
Powerful Number 筛法的更多相关文章
- Note - Powerful Number
Powerful Number 对于 \(n\in\mathbb N_+\),若不存在素数 \(p\) 使得 \(p\mid n~\land~p^2\not\mid n\),则称 \(n\) 为 ...
- 利用powerful number求积性函数前缀和
好久没更博客了,先水一篇再说.其实这个做法应该算是杜教筛的一个拓展. powerful number的定义是每个质因子次数都 $\geq 2$ 的数.首先,$\leq n$ 的powerful num ...
- powerful number求积性函数前缀和
算法原理 本文参考了 zzq's blog . \(\text{powerful number}\) 的定义是每个质因子次数都 \(\ge 2\) 的数,有个结论是 \(\ge n\) 的 \(\te ...
- Powerful Number 筛学习笔记
Powerful Number 筛学习笔记 用途 \(Powerful\ number\) 筛可以用来求出一类积性函数的前缀和,最快可以达到根号复杂度. 实现 \(Powerful\ number\) ...
- Powerful Number 学习笔记
定义 对于一个正整数 \(n\) ,若完全分解之后不存在指数 \(=1\) ,则称 \(n\) 为 \(\text{Powerful Number}\) . 可以发现的是,在 \([1,n]\) 中, ...
- [笔记] Powerful Number 筛
定义 Powerful Number(以下简称 PN)筛类似于杜教筛,可以拿来求一些积性函数的前缀和. 要求: 假设现在要求积性函数 \(f\) 的前缀和 \(F(n)=\sum_{i=1}^nf(i ...
- 【HDOJ6623】Minimal Power of Prime(Powerful Number)
题意:给定大整数n,求其质因数分解的最小质数幂 n<=1e18 思路:常规分解算法肯定不行 考虑答案大于1的情况只有3种:质数的完全平方,质数的完全立方,以及p^2*q^3,p,q>=1三 ...
- powerful number筛
心血来潮跑来实现以下这个东西 我们应该知道杜教筛的理论是 \(f * g=h\),那么问题在于如何找 \(g\). 之前的blog应该提到过可以令 \(g(p)=-f(p)\),这样一来 \(h\) ...
- $dy$讲课总结
字符串: 1.广义后缀自动机(大小为\(m\))上跑一个长度为\(n\)的串,所有匹配位置及在\(parent\)树上其祖先的数量的和为\(min(n^2,m)\),单次最劣是\(O(m)\). 但是 ...
随机推荐
- L2M-GAN: Learning to Manipulate Latent Space Semantics for Facial Attribute Editing阅读笔记
L2M-GAN: Learning to Manipulate Latent Space Semantics for Facial Attribute Editing 2021 CVPR L2M-GA ...
- Javabean使用实例
1.login.jsp <%@ page language="java" contentType="text/html; charset=utf-8" p ...
- GoF的23种设计模式的功能
GoF的23种设计模式的功能 前面说明了 GoF 的 23 种设计模式的分类,现在对各个模式的功能进行介绍. 单例(Singleton)模式:某个类只能生成一个实例,该类提供了一个全局访问点供外部获取 ...
- 向sqlserver 数据库插入emoji 表情包
1.emoji 属于特殊字符 所以我们必须使用utf-8 的编码格式进行保存 不过好在sqlserver 默认支持utf-8 2.将需要存储emoji的字段必须设置为nvarchar 类型 因为v ...
- 【雅礼集训 2017 Day2】棋盘游戏
loj 6033 description 给一个\(n*m\)的棋盘,'.'为可通行,'#'为障碍.Alice选择一个起始点,Bob先手从该点往四个方向走一步,Alice再走,不能走走过的点,谁不能动 ...
- 「文化课 · 校园生活」街舞社演出 & 校园十佳歌手决赛
女孩子跳舞很好看(流鼻血),男孩子跳舞很骚,跳的很有感觉.
- NOI Online 2022 一游
NOI Online 2022 一游 TG 啊,上午比提高,根据去年的经验,题目配置估计那至少一黑 所以直接做 1 题即可.(确信) 总体:估分 140,炸了但没完全炸 奇怪的过程 开题:3 2 1 ...
- 001 手把手用Git,Git从入门到上传本地项目到Github,看这篇就够了
安装git 下载Git 下载好后,一路next即可 安装好后,打开Git bash,进行配置 首先配置自己的身份 git config --global user.name "Name&qu ...
- Java常用类-包装类
包装类 Java中的基本类型功能简单,不具备对象的特性,为了使基本类型具备对象的特性,所以出现了包装类,就可以像操作对象一样操作基本类型数据;包装类不是为了取代基本数据类型,而是在数据类型需要使用 ...
- shell 问题记录
工作中写了个 RestAPI 接口,然后想通过 crontab 任务,去定时调用接口.发现去拼接 post 请求真的不容易.对于单引号,双引号的使用.很懵,示例代码如下:对于 '$line' 处,单引 ...