goalng-sync/atomic原子操作
1.go已经提供了锁,为什么还需要atomic原子操作?
1.加锁代价比较高,耗时多,需要上下文切换。加锁解锁在代码层实现,而代码是运行在用户态空间中,对底层进行操作时需要从用户态空间切换到内核空间,再由内核操作底层资源。耗时多
2.原子操作在用户态可以完成,性能比互斥锁高。原子操作在cpu层面支持的,cpu可以直接操作底层资源
3.原子操作需求步骤简单,无需加锁解锁步骤
2.atomic原子操作为什么比mutex快?
1.原子操作快,是因为依赖于cpu指令,而不是依赖外部锁。不会额外的上下文切换
2.原子操作能够保证执行期间是连续且不会被中断(变量不会被其他修改,mutex可能存在被其他修改的情况)
3.CAS
CAS是cpu硬件同步原语,是Compare And Swap的缩写(比较并交换),原子操作中CAS,再sync/atomic包中,全部以ComparAndSwap开头的函数名都是CAS操作
go中CAS操作,是借用CPU提供的原子性指令来实现。CAS操作修改共享变量时,不需要对共享变量加锁,而是通过类似乐观锁的方式进行检查,本质还是不断的占用CPU资源换取加锁带来的开销(如上下文切换时间开销)。
原子操作优势:
可以在不形成临界区和创建互斥量的情况下完成并发安全的值替换操作。这可以大大的减少同步对程序性能的损耗。
原子操作劣势:
在被操作值被频繁的变更的情况下,CAS操作并不那么容易成功。因为需要对ild值进行匹配,只有匹配成功了才进行下一步的修改。
当前atmomic包有以下几种原子操作:
Add,ComparAndSwap,Load,Store,Swap
4.互斥锁与原子操作区别
互斥锁目的:互斥锁是用来保护一段逻辑的,保证并发安全。(比如操作数据库保护)
原子操作目的:原子操作作用于一个变量的更新保护,保证并发安全(比如操作数据库不能原子操作)
mutex底层实现:mutex由操作系统的调度器实现
原子操作底层实现:由底层硬件指令直接提供支持,这些指令在执行过程中不允许中断,因此原子操作可以在无锁的情况下保证并发安全,性能随cpu的数量增多而线性扩展。
5.原子操作方法
5.1 atomic.AddInt32--增减
增减,操作方法的命名方式为AddXXX,保证对操作数进行原子的增减,支持的类型为int32、int64、uint32、uint64、uintptr,使用时以AddXXX就是对应的操作方法。
//加
func demo() {
var count int32 = 0
atomic.AddInt32(&count, 10)
fmt.Println(count) //10
}
//减
func demo() {
var count int32 = 0
atomic.AddInt32(&count, -10)
fmt.Println(count) //-10
}
锁和原子操作对比:
//Mutex锁
func demo1() {
sta := time.Now().Unix()
count := 0
mux := sync.Mutex{}
wg := sync.WaitGroup{}
for i := 0; i < 10000; i++ {
wg.Add(1)
go func() {
defer wg.Done()
for j := 0; j < 10000; j++ {
mux.Lock()
count++
mux.Unlock()
}
}()
}
wg.Wait()
fmt.Println(count) //100000000
fmt.Println(time.Now().Unix() - sta) //10秒
}
//atomic原子操作:快2倍不止
func demo2() {
sta := time.Now().Unix()
wg := sync.WaitGroup{}
var count int32 = 0
for i := 0; i < 10000; i++ {
wg.Add(1)
go func() {
defer wg.Done()
for j := 0; j < 10000; j++ {
atomic.AddInt32(&count, 1)
}
}()
}
wg.Wait()
fmt.Println(count) //100000000
fmt.Println(time.Now().Unix() - sta) //4秒
}
5.2 CAS-atomic.CompareAndSwapInt32--比较并替换
CompareAndSwap:比较并替换,类似乐观锁,先比较下old值与当前值是否一致,一致则把new的值替换
操作方法的命名方式为CompareAndSwapXXX
//true
func demo3() {
var count int32 = 0
boo := atomic.CompareAndSwapInt32(&count, 0, 100)
fmt.Println(count) //100
fmt.Println(boo) //true
}
//false
func demo3() {
var count int32 = 0
boo := atomic.CompareAndSwapInt32(&count, 10, 100)
fmt.Println(count) //0
fmt.Println(boo) //false
}
5.3 atomic.StoreInt32--写操作
func demo3() {
var count int32 = 0
atomic.StoreInt32(&count, 666)
fmt.Println(count) //666
}
5.4 atomic.LoadInt32--读操作
func demo3() {
var count int32 = 0
atomic.StoreInt32(&count, 666)
val := atomic.LoadInt32(&count)
fmt.Println(val) //666
}
5.5 atomic.SwapInt32--直接交换
atomic.SwapInt32:直接交换,并返回交换前的值
func demo3() {
var count int32 = 0
old := atomic.SwapInt32(&count, 100)
fmt.Println(old) //0
fmt.Println(count) //100
}
goalng-sync/atomic原子操作的更多相关文章
- golang sync/atomic
刚刚学习golang原子操作处理的时候发现github上面一个比较不错的golang学习项目 附上链接:https://github.com/polaris1119/The-Golang-Standa ...
- 原子操作--sync/atomic的用法
golang 通过sync/atomic库来支持cpu和操作系统级别的原子操作.但是对要操作类型有如下要求 int32, int64,uint32, uint64,uintptr,unsafe包中的P ...
- atomic 原子操作
原子操作:操作仅由一个独立的CPU指令代表和完成.保证并发环境下原子操作的绝对安全 标准库代码包:sync/atomic atomic是最轻量级的锁,在一些场景下直接使用atomic包还是很有效的 C ...
- 并发之java.util.concurrent.atomic原子操作类包
15.JDK1.8的Java.util.concurrent.atomic包小结 14.Java中Atomic包的原理和分析 13.java.util.concurrent.atomic原子操作类包 ...
- golang语言中sync/atomic包的学习与使用
package main; import ( "sync/atomic" "fmt" "sync" ) //atomic包提供了底层的原子级 ...
- C++11开发中的Atomic原子操作
C++11开发中的Atomic原子操作 Nicol的博客铭 原文 https://taozj.org/2016/09/C-11%E5%BC%80%E5%8F%91%E4%B8%AD%E7%9A%84 ...
- 深入理解Atomic原子操作和volatile非原子性
原子操作可以理解为: 一个数,很多线程去同时修改它,不加sync同步锁,就可以保证修改结果是正确的 Atomic正是采用了CAS算法,所以可以在多线程环境下安全地操作对象. volatile是Java ...
- atomic原子操作
C++中对共享数据的存取在并发条件下可能会引起data race的未定义行为,需要限制并发程序以某种特定的顺序执行,有两种方式:1.使用mutex保护共享数据: 2.原子操作 原子操作:针对原子类型操 ...
- 深入理解java:2.3.1. 并发编程concurrent包 之Atomic原子操作(循环CAS)
java中,可能有一些场景,操作非常简单,但是容易存在并发问题,比如i++, 此时,如果依赖锁机制,可能带来性能损耗等问题, 于是,如何更加简单的实现原子性操作,就成为java中需要面对的一个问题. ...
随机推荐
- linux篇-Linux逻辑卷详解总结
LVM是逻辑卷管理(Logical Volume Manager)的简称,它是建立在物理存储设备之上的一个抽象层,允许你生成逻辑存储卷,与直接使用物理存储在管理上相比,提供了更好灵活性. LVM将存储 ...
- 101_Power Pivot DAX 累计至今,历史累计至今
焦棚子的文章目录 一.背景 DAX中已经有诸如YTD,QTD,MTD时间智能函数.用起来也比较方便. 但很多时候需要看历史累计至今的数据,需要自己根据实际情况写dax. 今天抛砖引玉,写一个示例. 二 ...
- BERT的优化演进方法汇总(持续更新)
模型结构演进 本文以演进方向和目的为线索梳理了一些我常见到但不是很熟悉的预训练语言模型,首先来看看"完全版的BERT":RoBERTa: A Robustly Optimized ...
- MySQL之事务隔离级别和MVCC
事务隔离级别 事务并发可能出现的问题 脏写 事务之间对增删改互相影响 脏读 事务之间读取其他未提交事务的数据 不可重复读 一个事务在多次执行一个select读到的数据前后不相同.因为被别的未提交事务修 ...
- 《HALCON数字图像处理》第五章笔记
目录 第五章 图像运算 图像的代数运算 加法运算 图像减法 图像乘法 图像除法 图像逻辑运算(位操作) 图像的几何变换 图像几何变换的一般表达式 仿射变换 投影变换 灰度插值 图像校正 我在Gitee ...
- php 正则获取字符串中的汉字(去除字符串中除汉字外的所有字符)
preg_match_all('/[\x{4e00}-\x{9fff}]+/u', $list[$i]['iparr'], $matches); $list[$i]['iparr'] = join(' ...
- 17.Nginx 重写(location rewrite)
Nginx 重写(location / rewrite) 目录 Nginx 重写(location / rewrite) 常见的nginx正则表达式 location lication的分类 loca ...
- C++对象间通信组件,让C++对象“无障碍交流”
介绍 这是很久之前的一个项目了,最近刚好有些时间,就来总结一下吧! 推荐初步熟悉项目后阅读本文: https://gitee.com/smalldyy/easy-msg-cpp 从何而来 这要从我从事 ...
- 理论+案例,带你掌握Angular依赖注入模式的应用
摘要:介绍了Angular中依赖注入是如何查找依赖,如何配置提供商,如何用限定和过滤作用的装饰器拿到想要的实例,进一步通过N个案例分析如何结合依赖注入的知识点来解决开发编程中会遇到的问题. 本文分享自 ...
- 【react】什么是fiber?fiber解决了什么问题?从源码角度深入了解fiber运行机制与diff执行
壹 ❀ 引 我在[react] 什么是虚拟dom?虚拟dom比操作原生dom要快吗?虚拟dom是如何转变成真实dom并渲染到页面的?一文中,介绍了虚拟dom的概念,以及react中虚拟dom的使用场景 ...