题意:给一个N个带权节点的树,权值以给定的K个素数为因子,求路径上节点乘积为立方数的路径条数

思路:立方数的性质是每个因子的个数为3的倍数,那么每个因子只需要保存0-2三个状态即可,然后路径就可以转化为一个K位3进制数,点分治后,便可以用一个map来查询路径经过根的答案。代码与上一题(poj1741)类似:http://www.cnblogs.com/jklongint/p/4960052.html

#pragma comment(linker,"/STACK:10240000,10240000")
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <ctime>
#include <map>
#include <vector>
using namespace std;
#define X first
#define Y second
#define pb(x) push_back(x)
#define mp(x, y) make_pair(x, y)
#define all(a) (a).begin(), (a).end()
#define mset(a, x) memset(a, x, sizeof(a))
#define mcpy(a, b) memcpy(a, b, sizeof(b))
#define cas() int T, cas = 0; cin >> T; while (T --)
template<typename T>bool umax(T&a, const T&b){return a<b?(a=b,true):false;}
template<typename T>bool umin(T&a, const T&b){return b<a?(a=b,true):false;}
typedef long long ll;
typedef pair<int, int> pii; #ifndef ONLINE_JUDGE
#include "local.h"
#endif const int N = 5e4 + 7;
const int M = N;
const int inf = 1e9 + 7; namespace Edge {
int last[N], to[M << 1], next[M << 1], cntE;
void init() {
cntE = 0;
memset(last, -1, sizeof(last));
}
void addEdge(int u, int v) {
to[cntE] = v;
next[cntE] = last[u];
last[u] = cntE ++;
}
} int n, K; struct Node {
char p[33];
char &operator[] (int x) {
return p[x];
}
ll getNum() {
ll ans = 0;
for (int i = 0; i < K; i ++) {
ans = ans * 3 + p[i];
}
return ans;
}
ll getComplement() {
ll ans = 0;
for (int i = 0; i < K; i ++) {
ans = ans * 3 + (p[i]? 3 - p[i] : 0);
}
return ans;
}
Node operator+ (Node &that) {
Node ans;
for (int i = 0; i < K; i ++) {
ans[i] = p[i] + that[i];
if (ans[i] >= 3) ans[i] -= 3;
}
return ans;
}
Node operator- (Node &that) {
Node ans;
for (int i = 0; i < K; i ++) {
ans[i] = p[i] - that[i];
if (ans[i] < 0) ans[i] += 3;
}
return ans;
}
}; namespace Center {
int root, siz, son[N];
void init() {
siz = inf;
}
void getRoot(int cur, int fa, int total, bool used[]) {
son[cur] = 0;
int buf = 0;
for (int i = Edge::last[cur]; ~i; i = Edge::next[i]) {
int to = Edge::to[i];
if (to != fa && !used[to]) {
getRoot(to, cur, total, used);
son[cur] += son[to] + 1;
buf = max(buf, son[to] + 1);
}
}
buf = max(buf, total - son[cur] - 1);
if (buf < siz || buf == siz && cur < siz) {
siz = buf;
root = cur;
}
}
} bool used[N];
Node r[N]; void getNode(int cur, int fa, Node sum, vector<Node> &vt, bool used[]) {
vt.pb(sum);
for (int i = Edge::last[cur]; ~i; i = Edge::next[i]) {
int to = Edge::to[i];
if (to != fa && !used[to]) getNode(to, cur, sum + r[to], vt, used);
}
} ll getAns(vector<Node> &vt, Node &s) {
ll ans = 0;
map<ll, int> mp;
for (int i = 0; i < vt.size(); i ++) {
mp[vt[i].getNum()] ++;
ans += mp[(vt[i] - s).getComplement()];
}
return ans;
} ll work(int cur) {
used[cur] = true;
vector<Node> total;
total.push_back(r[cur]);
ll ans = 0;
for (int i = Edge::last[cur]; ~i; i = Edge::next[i]) {
int to = Edge::to[i];
if (!used[to]) {
vector<Node> local;
getNode(to, cur, r[cur] + r[to], local, used);
ans -= getAns(local, r[cur]);
for (int j = 0; j < local.size(); j ++) {
total.push_back(local[j]);
}
Center::init();
Center::getRoot(to, cur, local.size(), used);
ans += work(Center::root);
}
}
return ans += getAns(total, r[cur]);
} ll p[N], a[N]; int main() {
#ifndef ONLINE_JUDGE
freopen("in.txt", "r", stdin);
//freopen("out.txt", "w", stdout);
#endif // ONLINE_JUDGE
while (cin >> n >> K) {
Edge::init();
Center::init();
mset(r, 0);
mset(used, 0);
for (int i = 0; i < K; i ++) {
scanf("%I64d", p + i);
}
for (int i = 1; i <= n; i ++) {
scanf("%I64d", a + i);
for (int j = 0; j < K; j ++) {
ll cur = p[j];
while (a[i] % cur == 0) {
r[i][j] ++;
if (r[i][j] == 3) r[i][j] = 0;
cur *= p[j];
}
}
}
int u, v;
for (int i = 1; i < n; i ++) {
scanf("%d%d", &u, &v);
Edge::addEdge(u, v);
Edge::addEdge(v, u);
}
Center::getRoot(1, 0, n, used);
cout << work(Center::root) << endl;
}
return 0;
}

  

[hdu4670 Cube number on a tree]点分治的更多相关文章

  1. HDU4670 cube number on a tree(点分治+三进制加法)

    The country Tom living in is famous for traveling. Every year, many tourists from all over the world ...

  2. HDU4670 Cube number on a tree 树分治

    人生的第一道树分治,要是早点学我南京赛就不用那么挫了,树分治的思路其实很简单,就是对子树找到一个重心(Centroid),实现重心分解,然后递归的解决分开后的树的子问题,关键是合并,当要合并跨过重心的 ...

  3. 【点分治】【map】【哈希表】hdu4670 Cube number on a tree

    求树上点权积为立方数的路径数. 显然,分解质因数后,若所有的质因子出现的次数都%3==0,则该数是立方数. 于是在模意义下暴力统计即可. 当然,为了不MLE/TLE,我们不能存一个30长度的数组,而要 ...

  4. hdu 4670 Cube number on a tree(点分治)

    Cube number on a tree Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/ ...

  5. HDU 4670 Cube number on a tree ( 树的点分治 )

    题意 : 给你一棵树 . 树的每一个结点都有一个权值 . 问你有多少条路径权值的乘积是一个全然立方数 . 题目中给了你 K 个素数 ( K <= 30 ) , 全部权值都能分解成这k个素数 思路 ...

  6. HDU 4670 Cube number on a tree

    divide and conquer on tree. #include <map> #include <vector> #include <cstdio> #in ...

  7. Square Number & Cube Number

    Square Number: Description In mathematics, a square number is an integer that is the square of an in ...

  8. CodeChef - PRIMEDST Prime Distance On Tree 树分治 + FFT

    Prime Distance On Tree Problem description. You are given a tree. If we select 2 distinct nodes unif ...

  9. 【BZOJ-1468】Tree 树分治

    1468: Tree Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1025  Solved: 534[Submit][Status][Discuss] ...

随机推荐

  1. E1. Send Boxes to Alice (Easy Version)

    题解: 保存每个1的位置.然后记录1的总个数cnt,如果存在一个k使得这个k是每个集合的倍数,那么为了使操作次数最小,这个k应该是cnt的质因子.(因为都是每个集合的数目1,使每个集合的数目变为2需要 ...

  2. B - How many integers can you find 杭电1976

     Now you get a number N, and a M-integers set, you should find out how many integers which are small ...

  3. Shell脚本日志关键字监控+告警

    最近小张的爬虫程序越来越多,可当爬虫程序报错,不能及时的发现,从而造成某些重要信息不能及时获取的问题,更有甚者,遭到领导的批评.于是就在想有没有一种方法,当爬取信息报错的时候,可以通过邮件或者短信的方 ...

  4. 使用 PyHamcrest 执行健壮的单元测试

    在 测试金字塔 的底部是单元测试.单元测试每次只测试一个代码单元,通常是一个函数或方法. 通常,设计单个单元测试是为了测试通过一个函数或特定分支的特定执行流程,这使得将失败的单元测试和导致失败的 bu ...

  5. 总结php删除html标签和标签内的内容的方法

    来源:https://www.cnblogs.com/shaoguan/p/7336984.html 经常扒别人网站文章的坑们:我是指那种批量式采集的压根不看内容的:少不了都会用到删除html标签的函 ...

  6. 20199308《Linux内核原理与分析》第十一周作业

    缓冲区溢出漏洞实验 实验步骤 一.初始设置 1.Ubuntu 和其他一些 Linux 系统中,使用地址空间随机化来随机堆(heap)和栈(stack)的初始地址,这使得猜测准确的内存地址变得十分困难, ...

  7. 2019-2020-1 20199326《Linux内核原理与分析》第八周作业

    可执行程序工作原理## 编译链接的过程### 示例程序hello.c #include<stdio.h> void main() { printf("Hello world\n& ...

  8. 一篇文章带你编写10种语言HelloWorld

    0,编程语言排行榜 计算机编程语言众多,世界上大概有600 多种编程语言,但是流行的也就几十种.我们来看下编程语言排行榜,下面介绍两种语言排行榜. Ⅰ TIOBE 指数 该指数每月更新一次,它监控了近 ...

  9. 【Linux常见命令】uname命令

    uname命令用于显示系统信息. uname可显示电脑以及操作系统的相关信息. 语法 uname [-amnrsv][--help][--version] 参数说明: -a或--all 显示全部的信息 ...

  10. Android Studio SVN配置忽略文件

    1.用Android Studio创建一个项目,会在根目录和Module目录下自动生成.gitignore文件,貌似是Git的配置文件,和SVN没有关系. 2.打开Setting-Version Co ...