@description@

给定一个含 N 个数的序列,Alice 与 Bob 在博弈。Alice 先手,轮流进行 N 次操作。

每一次操作会选择一个之前未选中的数,且与上一个玩家选择的数相邻。

如果是第一次或者上一次选择的数周围没有未被选中的数,则可以任意选择一个数。

两个人都想要最大化自己所选择的数之和,且都采取最优策略,求最后 Alice 选择的数之和与 Bob 选择的数之和。

原题连接。

@solution@

首先考虑第一次操作对应的几种可能性。

第一,先手可以直接取最左边/最右边,则接下来的方案唯一。

第二,先手选择一个中间的数 x,后手决定选 x 的左边还是右边。

考虑第二种情况,如果 x 的左边/右边有奇数个数,先手可能会被动地变成后手。

而此时,后手存在一种可能的取数方法,对应着先手一开始取最左边/最右边的方案。

也就是说此时后手的最优策略一定不劣于先手一开始取最左边/最右边的方案,这对先手而言不利,所以先手绝对不会让出主动权。

那么这意味着如果先手选择第二类情况,那么选择的那个 x 的左边/右边都应有偶数个数。

而 N 为偶数时这是不可能办到的,即 N 为偶数时先手一开始只能选择最左边/最右边。

我们接下来考虑 N 为奇数。

此时流程变为:"先手取走一个偶数位置的数" -> "后手选择左边/右边,先手取走偶数位置的数,后手取走奇数位置的数" -> "迭代到区间的子问题" -> ... -> "先手取走区间内奇数位置的数(取走最左边/最右边的数),后手取走偶数位置的数"。

假如最后奇数位置上的数在区间 [l, r] 内,那么先手取走的数应是 "[1...l-1] 中的偶数位置" + "[l...r] 中的奇数位置" + "[r+1...N] 的偶数位置"。

不妨看成先选择全部偶数位置的数,然后选择一个区间 [l, r] 将其奇偶位置的选择状况反转。

先手需要最大化 [l, r] 中奇数位置的和 - 偶数位置的和,可以通过一些处理写成前缀和 s[r] - s[l-1] 的形式。

考虑一下二分答案:假如 s[r] - s[l-1] >= x,我们就可以知道哪些区间是合法。

可以通过手玩发现如果有些合法区间首尾相接,即存在 [l1, r1], [l2, r2], ..., [lk, rk] 使得 \(r_i + 1 = l_{i+1} - 1\),那么先手就可以最终落到某一个区间中,视为检验成功

归纳法即可证。

怎么快速检验呢?可以使用 dp。记 dp[i](此处默认 i 为偶数)表示 [1, i] 是否能划分成若干合法区间,则枚举 j < i 且 dp[j] 为真,如果有 s[i-1] - s[j] >= x 即可转移。

我们可以维护 dp[j] 为真的 min{s[j]} 来方便实现转移,这样一来甚至连 dp 都不存下来。

@accepted code@

#include <cstdio>
#include <algorithm>
using namespace std; const int MAXN = 300000;
const int INF = (1 << 30); int s[2], sum[MAXN + 5], a[MAXN + 5], N;
bool check(int x) {
int k = 0;
for(int i=2;i<=N;i+=2) {
if( sum[i-1] - k >= x )
k = min(k, sum[i]);
}
return sum[N] - k >= x;
} int main() {
scanf("%d", &N);
for(int i=1;i<=N;i++)
scanf("%d", &a[i]), s[i & 1] += a[i];
if( N % 2 == 0 )
printf("%d %d\n", max(s[0], s[1]), min(s[0], s[1]));
else {
for(int i=1;i<=N;i++) sum[i] = sum[i-1] + (i & 1 ? a[i] : -a[i]);
int le = 0, ri = s[0] + s[1];
while( le < ri ) {
int mid = (le + ri + 1) >> 1;
if( check(mid) ) le = mid;
else ri = mid - 1;
}
printf("%d %d\n", s[0] + le, s[1] - le);
}
}

@details@

我才不会说我一开始想到了二分答案随后就把它叉掉了。

最后写了个神奇的线段树做法,发现过不了,然后把它叉掉过后又想起了二分答案其实可以做。

感觉脑子需要修理一下,最近短路的现象太频繁了。

@atcoder - AGC026F@ Manju Game的更多相关文章

  1. p_b_p_b 杂题选讲

    [ARC119F] AtCoder Express 3 [ARC117F] Gateau 考虑二分答案,对前缀和建差分约束 \(\text{check}\) ,但是用 \(\text{spfa}\) ...

  2. Atcoder Grand Contest 026 (AGC026) F - Manju Game 博弈,动态规划

    原文链接www.cnblogs.com/zhouzhendong/AGC026F.html 前言 太久没有发博客了,前来水一发. 题解 不妨设先手是 A,后手是 B.定义 \(i\) 为奇数时,\(a ...

  3. AtCoder Regular Contest 061

    AtCoder Regular Contest 061 C.Many Formulas 题意 给长度不超过\(10\)且由\(0\)到\(9\)数字组成的串S. 可以在两数字间放\(+\)号. 求所有 ...

  4. AtCoder Grand Contest 001 C Shorten Diameter 树的直径知识

    链接:http://agc001.contest.atcoder.jp/tasks/agc001_c 题解(官方): We use the following well-known fact abou ...

  5. AtCoder Regular Contest 082

    我都出了F了……结果并没有出E……atcoder让我差4分上橙是啥意思啊…… C - Together 题意:把每个数加1或减1或不变求最大众数. #include<cstdio> #in ...

  6. AtCoder Regular Contest 069 D

    D - Menagerie Time limit : 2sec / Memory limit : 256MB Score : 500 points Problem Statement Snuke, w ...

  7. AtCoder Regular Contest 076

    在湖蓝跟衡水大佬们打的第二场atcoder,不知不觉一星期都过去了. 任意门 C - Reconciled? 题意:n只猫,m只狗排队,猫与猫之间,狗与狗之间是不同的,同种动物不能相邻排,问有多少种方 ...

  8. AtCoder Grand Contest 016

    在雅礼和衡水的dalao们打了一场atcoder 然而窝好菜啊…… A - Shrinking 题意:定义一次操作为将长度为n的字符串变成长度n-1的字符串,且变化后第i个字母为变化前第i 或 i+1 ...

  9. AtCoder Beginner Contest 069【A,水,B,水,C,数学,D,暴力】

    A - K-City Time limit : 2sec / Memory limit : 256MB Score : 100 points Problem Statement In K-city, ...

随机推荐

  1. WebApiClientCore使用说明

    前言 我是WebApiClient库的作者,目前在开发其.netcore版本,在整理其readme后,想想一来这部分内容可能对大家有用,二来兴许能给WebApiClient带人更多人气,所以将read ...

  2. C语言基础知识(三)——指针

    指针定义 1.指针的值表示的是它所指向对象的地址,指针+1表示的是下一元素的地址,按**字节**编址,而不是下一字节的地址. 2.依照数据类型而定,short占用两字节.int占用4字节.double ...

  3. Maven、Gradle 配置国内镜像源

    Maven 全局配置 修改 Maven 默认的全局配置文件: 类 Unix 系统: Mac OS / Linux 默认在 ~/.m2/settings.xml Windows 系统:一般在 Maven ...

  4. Layui 改变数据表格样式覆盖

    改变表格行高.layui-table-cell{ height:40px; line-height: 36px; } 改变复选框高宽和定位等等.layui-table-view .layui-form ...

  5. LeetCode树专题

    LeetCode树专题 98. 验证二叉搜索树 二叉搜索树,每个结点的值都有一个范围 /** * Definition for a binary tree node. * struct TreeNod ...

  6. 深入理解JS:执行上下文中的this(一)

    目录 执行上下文与执行上下文栈 this 全局环境 函数环境 总结 参考 1.执行上下文与执行上下文栈 (1)什么是执行上下文? 在 JavaScript 代码运行时,解释执行全局代码.调用函数或使用 ...

  7. Android | 超简单集成HMS ML Kit实现最大脸微笑抓拍

    前言   如果大家对HMS ML Kit 人脸检测功能有所了解,相信已经动手调用我们提供的接口编写自己的APP啦.目前就有小伙伴在调用接口的过程中反馈,不太清楚HMS ML Kit 文档中的MLMax ...

  8. switch下返回各类的数值

    定义一个变量,在每个case下赋值,最后return public static int orderDishes(int choice) { int price = 0; switch (choice ...

  9. [工具-006] C#如何模拟发包登录

    最近接到一个任务,就是模拟某个贴吧的登录发帖功能,我的思路是通过IE浏览器的工具对登陆操作进行抓包,记录登录时候请求的URL,请求方式,请求正文等信息进行模拟的发包. 1.首先我们要到登陆页面,以摇篮 ...

  10. 一:HTTP协议解析

    一:HTTP协议解析 1.HTTP协议即超文本传输协议,是一种详细规定了浏览器和万维网服务器之间互相通信的规则,他是万维网交换信息的基础,它允许将HTML(超文本标记语言)文档从web服务器传送到we ...