spark机器学习从0到1逻辑斯蒂回归之(四)

一、概念
逻辑斯蒂回归(logistic regression)是统计学习中的经典分类方法,属于对数线性模型。logistic回归的因变量可以是二分类的,也可以是多分类的。logistic回归的因变量可以是二分非线性差分方程类的,也可以是多分类的,但是二分类的更为常用,也更加容易解释。所以实际中最为常用的就是二分类的logistic回归。
二、logistic分布
设X是连续随机变量,X服从逻辑斯蒂分布是指X具有下列分布函数和密度函数:

式中,μ为位置参数,γ>0为形状参数。
密度函数是脉冲函数
分布函数是一条Sigmoid曲线(sigmoid curve)即为阶跃函数

三、二项逻辑斯谛回归模型
二项逻辑斯谛回归模型是如下的条件概率分布

x∊Rn是输入,Y∊{0,1}是输出,w∊Rn和b∊R是参数,
w称为权值向量,b称为偏置,w·x为w和x的内积。
可以求得P(Y=1|x)和P(Y=0|x)。
逻辑斯谛回归比较两个条件概率值的大小,将实例x分到概率值较大的那一类。
四、LR模型参数估计
可以应用极大似然估计法估计模型参数

对L(w)求极大值,得到w的估计值。
问题就变成了以对数似然函数为目标函数的最优化问题。
LR学习中通常采用的方法是梯度下降法及拟牛顿法。
五、代码实现
我们以iris数据集(https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data)为例进行分析。iris以鸢尾花的特征作为数据来源,数据集包含150个数据集,分为3类,每类50个数据,每个数据包含4个属性,是在数据挖掘、数据分类中非常常用的测试集、训练集。
import org.apache.spark.SparkConf;
import org.apache.spark.SparkContext;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.mllib.classification.LogisticRegressionModel;
import org.apache.spark.mllib.classification.LogisticRegressionWithLBFGS;
import org.apache.spark.mllib.evaluation.MulticlassMetrics;
import org.apache.spark.mllib.regression.LabeledPoint;
import org.apache.spark.mllib.util.MLUtils;
5.1、读取数据
首先,读取文本文件;然后,通过map将每行的数据用“,”隔开,在我们的数据集中,每行被分成了5部分,前4部分是鸢尾花的4个特征,最后一部分是鸢尾花的分类。把这里我们用LabeledPoint来存储标签列和特征列。
LabeledPoint在监督学习中常用来存储标签和特征,其中要求标签的类型是double,特征的类型是Vector。这里,先把莺尾花的分类进行变换,”Iris-setosa”对应分类0,”Iris-versicolor”对应分类1,其余对应分类2;然后获取莺尾花的4个特征,存储在Vector中。
SparkConf conf = new SparkConf().setAppName("LogisticRegression").setMaster("local");
JavaSparkContext sc = new JavaSparkContext(conf);
JavaRDD<String> source = sc.textFile("data/mllib/iris.data");
JavaRDD<LabeledPoint> data = source.map(line->{
String[] splits = line.split(",");
Double label = 0.0;
if(splits[4].equals("Iris-setosa")) {
label = 0.0;
}else if(splits[4].equals("Iris-versicolor")) {
label = 1.0;
}else {
label = 2.0;
}
return new LabeledPoint(label,Vectors.dense(Double.parseDouble(splits[0]),
Double.parseDouble(splits[1]),
Double.parseDouble(splits[2]),
Double.parseDouble(splits[3])));
});
打印数据:
// 控制台输出结果:
(0.0,[5.1,3.5,1.4,0.2])
(0.0,[4.9,3.0,1.4,0.2])
(0.0,[4.7,3.2,1.3,0.2])
(0.0,[4.6,3.1,1.5,0.2])
(0.0,[5.0,3.6,1.4,0.2])
(0.0,[5.4,3.9,1.7,0.4])
(0.0,[4.6,3.4,1.4,0.3])
(0.0,[5.0,3.4,1.5,0.2])
(0.0,[4.4,2.9,1.4,0.2])
(0.0,[4.9,3.1,1.5,0.1])
(0.0,[5.4,3.7,1.5,0.2])
... ...
5.2、构建模型:
// 首先进行数据集的划分,这里划分60%的训练集和40%的测试集:
JavaRDD<LabeledPoint>[] splits = data.randomSplit(new double[] {0.6,0.4},11L);
JavaRDD<LabeledPoint> traning = splits[0].cache();
JavaRDD<LabeledPoint> test = splits[1];
构建逻辑斯蒂模型,用set的方法设置参数,比如说分类的数目,这里可以实现多分类逻辑斯蒂模型:
LogisticRegressionModel model = new LogisticRegressionWithLBFGS().setNumClasses(3).run(traning.rdd());
输出结果:
org.apache.spark.mllib.classification.LogisticRegressionModel: intercept = 0.0, numFeatures = 8, numClasses = 3, threshold = 0.5
接下来,调用多分类逻辑斯蒂模型用的predict方法对测试数据进行预测,并把结果保存在MulticlassMetrics中。这里的模型全名为LogisticRegressionWithLBFGS,加上了LBFGS,表示Limited-memory BFGS。其中,BFGS是求解非线性优化问题(L(w)求极大值)的方法,是一种秩-2更新,以其发明者Broyden, Fletcher, Goldfarb和Shanno的姓氏首字母命名。
JavaPairRDD<Object,Object> predictionAndLables = test.mapToPair(p->
new Tuple2<>(model.predict(p.features()),p.label())
);
这里,采用了test部分的数据每一行都分为标签label和特征features,然后利用map方法,对每一行的数据进行model.predict(features)操作,获得预测值。并把预测值和真正的标签放到predictionAndLabels中。我们可以打印出具体的结果数据来看一下:
(0.0,0.0)
(0.0,0.0)
(0.0,0.0)
(0.0,0.0)
(0.0,0.0)
(0.0,0.0)
(0.0,0.0)
(0.0,0.0)
(0.0,0.0)
(0.0,0.0)
(0.0,0.0)
(0.0,0.0)
(0.0,0.0)
(0.0,0.0)
(0.0,0.0)
(0.0,0.0)
(0.0,0.0)
(0.0,0.0)
(1.0,1.0)
(1.0,1.0)
(1.0,1.0)
(1.0,1.0)
(1.0,1.0)
(1.0,1.0)
(1.0,1.0)
(1.0,1.0)
(2.0,1.0)
(1.0,1.0)
(1.0,1.0)
(1.0,1.0)
(1.0,1.0)
(1.0,1.0)
(1.0,1.0)
(1.0,1.0)
(2.0,2.0)
(2.0,2.0)
(2.0,2.0)
(2.0,2.0)
(2.0,2.0)
(2.0,2.0)
(2.0,2.0)
(2.0,2.0)
(2.0,2.0)
(2.0,2.0)
(2.0,2.0)
(1.0,2.0)
(2.0,2.0)
(2.0,2.0)
(2.0,2.0)
(2.0,2.0)
(2.0,2.0)
(2.0,2.0)
可以看出,大部分的预测是对的。其中(2.0,1.0),(1.0,2.0)的预测与实际标签不同。
5.3、模型评估
模型预测的准确性打印:
//准确性打印:
metrics:0.9615384615384616
spark机器学习从0到1逻辑斯蒂回归之(四)的更多相关文章
- 【转】机器学习笔记之(3)——Logistic回归(逻辑斯蒂回归)
原文链接:https://blog.csdn.net/gwplovekimi/article/details/80288964 本博文为逻辑斯特回归的学习笔记.由于仅仅是学习笔记,水平有限,还望广大读 ...
- 机器学习之LinearRegression与Logistic Regression逻辑斯蒂回归(三)
一 评价尺度 sklearn包含四种评价尺度 1 均方差(mean-squared-error) 2 平均绝对值误差(mean_absolute_error) 3 可释方差得分(explained_v ...
- python机器学习实现逻辑斯蒂回归
逻辑斯蒂回归 关注公众号"轻松学编程"了解更多. [关键词]Logistics函数,最大似然估计,梯度下降法 1.Logistics回归的原理 利用Logistics回归进行分类的 ...
- [置顶] 局部加权回归、最小二乘的概率解释、逻辑斯蒂回归、感知器算法——斯坦福ML公开课笔记3
转载请注明:http://blog.csdn.net/xinzhangyanxiang/article/details/9113681 最近在看Ng的机器学习公开课,Ng的讲法循循善诱,感觉提高了不少 ...
- 【分类器】感知机+线性回归+逻辑斯蒂回归+softmax回归
一.感知机 详细参考:https://blog.csdn.net/wodeai1235/article/details/54755735 1.模型和图像: 2.数学定义推导和优化: 3.流程 ...
- 【项目实战】pytorch实现逻辑斯蒂回归
视频指导:https://www.bilibili.com/video/BV1Y7411d7Ys?p=6 一些数据集 在pytorch框架下,里面面有配套的数据集,pytorch里面有一个torchv ...
- 成功秀了一波scala spark ML逻辑斯蒂回归
1.直接上官方代码,调整过的,方可使用 package com.test import org.apache.spark.{SparkConf, SparkContext} import org.ap ...
- 逻辑斯蒂回归(Logistic Regression)
逻辑回归名字比较古怪,看上去是回归,却是一个简单的二分类模型. 逻辑回归的模型是如下形式: 其中x是features,θ是feature的权重,σ是sigmoid函数.将θ0视为θ0*x0(x0取值为 ...
- [转]逻辑斯蒂回归 via python
# -*- coding:UTF-8 -*-import numpydef loadDataSet(): return dataMat,labelMat def sigmoid(inX): retur ...
随机推荐
- 2019-2020-1 20199326《Linux内核原理与分析》第三周作业
第三周学习内容 庖丁解牛Linux内核分析第二章:操作系统是如何工作的 Linux内核分析实验二 学到的一些知识 计算机的三大法宝:存储程序计算机,函数调用堆栈,中断 堆栈是C语言程序运行时必须使用的 ...
- 【shell】Shell变量基础及深入
1. 什么是变量 变量就是用一个固定的字符串(也可能是字符数字等的组合),替代更多更复杂的内容,这个内容里可能还会包含变量和路径,字符串等其他内容. 变量的定义是存在内存中. x=1 y=2 2. 变 ...
- HTML中使用CSS样式(上)
在每一个标签上都可以设置style属性,这就是CSS样式: <div style="height:48px;border: 1px solid red;text-align:cente ...
- 手把手教你用Node.js爬虫爬取网站数据
个人网站 https://iiter.cn 程序员导航站 开业啦,欢迎各位观众姥爷赏脸参观,如有意见或建议希望能够不吝赐教! 开始之前请先确保自己安装了Node.js环境,还没有安装的的童鞋请自行百度 ...
- Java中的集合Queue
2019独角兽企业重金招聘Python工程师标准>>> package com.zhaogang.test; import org.junit.Test; import java.u ...
- POJ1088 滑雪题解+HDU 1078(记忆化搜索DP)
Description Michael喜欢滑雪百这并不奇怪, 因为滑雪的确很刺激.可是为了获得速度,滑的区域必须向下倾斜,而且当你滑到坡底,你不得不再次走上坡或者等待升降机来载你.Michael想知道 ...
- 在Vue中使用iview的Select控件实现一个多级选项列表
前言 今天项目要实现一个多级选项列表,发现iview官网上没有写这个例子,于是自己就实现了,如果对你有帮助请点个赞 ‘ * ’!! 解决方法:下面我们就来使用V-for 来定义一个二级选项列表 ,代码 ...
- Node 内存泄漏排查案例
背景 在阿里云上看到我运行了一段时间的程序,发现 memory 一项基本是在稳步提升,就知道有内存泄漏的情况出现.如下图 近三日从 35% 升到 40%,缓慢而坚定的提升. 代码 排查此问题需要分析其 ...
- Collections集合工具类常用的方法
java.utils.Collections //是集合工具类,用来对集合进行操作.部分方法如下: public static <T> boolean addAll(Collection& ...
- DHCP报文(1)
DHCP报文 1.地址申请类型(4步工作原理,常考) (1)此题是典型的四步工作原理,在其配置过程中由于没有分配IP地址,用的是广播形式,所以其4中报文类型的目的IP地址均为255.255.255.2 ...